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2018



UNIVERSITY OF JYVÄSKYLÄ
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Abstract

Health examination surveys aim to collect reliable information on the health and risk factors
of a population of interest. Missing data occur when some invitees do not participate the
survey. If non-participation is associated with the variables to be studied, then the estimates
based only on the participants cannot be generalised to the population of interest. In this
case, the estimates have selection bias, which misleads the decision-makers.

The purpose of this thesis is to develop statistical methods to reduce the selection bias in
the cross-sectional data using additional data sources. The data, which we use, comes from
the National FINRISK Study, and we aim to estimate the prevalences of self-reported daily
smoking and self-reported heavy alcohol consumption. The sources of additional information
are follow-up data consisting of hospitalisations and causes of deaths, and questionnaire data
collected from the non-participants of health examination by contacting them again, called
re-contact data. Follow-up data give indirect information after the follow-up period about
the health behaviour of non-participants during the health examination while the re-contact
data give information similar to the health examination survey. This thesis presents methods
for utilising these sources of additional information. Multiple imputation has been applied
for the use of re-contact data, and Bayesian statistical modelling has been implemented for
the use of follow-up data.

The thesis demonstrates that the use of additional data sources and these statistical meth-
ods leads to prevalence estimates for daily smoking and heavy alcohol consumption that are
higher than those obtained from the participants only. Multiple imputation can be utilised for
prevalence estimation if the re-contact data are available. Bayesian modelling is appropriate
for the situation where re-contact data are not available but the follow-up data are and have
follow-up period long enough to indicate about the differences between the participants and
non-participants.

This thesis presents means for reducing the selection bias caused by non-participation. It
is important to reduce the magnitude of the bias for obtaining more reliable information for
example to support decision making. The statistical methods used in this thesis can also be
applied to other fields of research than in the health studies.
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Tiivistelmä

Terveystarkastustutkimusten tavoitteena on kerätä luotettavaa tietoa kohdepopulaation ter-
veydentilasta ja riskitekijöistä. Terveystarkastustutkimuksissa puuttuvaa tietoa syntyy, kun
osa tutkimukseen kutsutuista ei osallistu tutkimukseen, jolloin puhutaan poisjääneistä ja
(osallistuja-) kadosta. Mikäli poisjäänti on yhteydessä tutkittaviin terveydellisiin tekijöihin,
niin tutkimuksen osallistujilta lasketut tulokset eivät ole yleistettävissä alkuperäiseen kohde-
populaatioon. Tällöin sanotaan, että osallistujien estimaateissa on valikoitumisharhaa, joka
vaikeuttaa päätöksentekoa.

Tämän väitöstutkimuksen tavoitteena on kehittää menetelmiä, joiden avulla voidaan pie-
nentää valikoitumisharhaa poikkileikkausaineistossa lisätietoaineistoja käyttämällä. Käytössä
on aineisto kansallisesta FINRISKI-tutkimuksesta ja kiinnostuksen kohteena on itserapor-
toidun päivittäisen tupakoinnin ja alkoholin suurkulutuksen vallitsevuus eli prevalenssi. Lisä-
tiedon lähteinä ovat seuranta-aineistona sairaalakäynti- ja kuolinsyyaineistot sekä nk. uudel-
leenyhteydenottoaineisto, joka on kerätty terveystarkastuksesta poisjääneiltä ottamalla uu-
delleen yhteyttä terveystarkastuksen jälkeen. Seuranta-aineiston avulla voidaan seuranta-
ajan jälkeen saada epäsuoraa informaatiota kohdepopulaation terveydentilasta ja elintavoista
tutkimushetkellä, mutta uuden yhteydenoton kautta saadaan vastaavaa tietoa kuin varsi-
naisessa terveystarkastustutkimuksessa pian kyselyn jälkeen. Tämä väitöskirja esittää mene-
telmiä kumpaankin tilanteeseen. Uudelleenyhteydenottoaineistoa käytettäessä on sovellettu
moni-imputointia ja seuranta-aineistoa käytettäessä bayeslaista tilastollista mallintamista.

Saaduista tutkimustuloksista nähdään, että lisätietoaineistoja ja käytettyjä tilastomenetel-
miä hyödyntämällä saadaan korkeammat vallitsevuusestimaatit päivittäiselle tupakoinnille ja
alkoholin suurkulutukselle kuin perustuen pelkästään osallistujilta saatuun aineistoon. Moni-
imputointia voidaan käyttää apuna vallitsevuuden harhan pienentämisessä, mikäli uudelleen-
yhteydenotto on toteutettu. Bayeslainen mallintaminen soveltuu tilanteeseen, jossa uudel-
leenyhteydenottoaineistoa ei ole saatavilla, mutta seuranta-aineisto on ja seuranta-aika on
tarpeeksi pitkä, jotta seuranta-aineistosta saadaan tietoa osallistujien ja poisjääneiden ter-
veydentilasta ja terveyskäyttäytymisestä.

Tämä väitöskirja tarjoaa keinoja valikoituneen poisjäännin aiheuttaman harhan pienen-
tämiseen. Harhan suuruuden pienentäminen on tärkeää luotettavamman tiedon saamiseksi
esimerkiksi päätöksenteon tueksi. Työssä käytettyjä tilastomenetelmiä voidaan soveltaa myös
muilla tieteenaloilla kuin terveystieteissä.
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Chapter 1

Introduction

Information about the health of a population is needed for decision-making purposes regard-
ing health policy (Tolonen, 2013, p. 5). The World Health Organization (2015) lists various
mortality rates, e.g. age-specific and disease-specific mortality rates, various risk factor in-
dicators, e.g. total alcohol consumption and tobacco use, and indicators about coverage and
functionality of health service as the key indicators of population health. Many of these health
indicators are prevalences. The prevalence describes how widespread a disease or a risk factor
is in the population (Rothman, 2012, p. 53). Prevalences are usually estimated using data
from survey studies or register-based population studies (Rothman, 2012).

Health examination surveys (HESs) are population based surveys, which collect data using
questionnaires and physical measurements (Tolonen, 2013). Physical measurements include
measurements of weight, height, blood pressure etc. and collection of many biological samples.
The HES data are useful in health policy decision-making as well as in planning and evaluation
of prevention programs (Tolonen, 2013).

In an ideal situation, surveys provide diverse and reliable information about the target
population (Thompson, 1997). In the best-case scenario, a random sample is drawn, the
probability of belonging to the sample is known for each individual, and all the individuals of
the sample are studied carefully. The results of this kind of survey can be generalised to the
entire population of interest. This kind of sample is said to be representative with respect to
target population.

Often, we cannot obtain data from all invitees, but only from persons who accept to par-
ticipate. Persons who attend the physical health examination and reply to the questionnaire
are called participants. The survey measurements are then collected from participants but
cannot be collected from non-participants. Thus, the survey suffers from non-participation,
which leads to missing data.

Selective non-participation refers to a situation, where non-participation (and participa-
tion) to the survey is associated with some variables measured in the survey.1 This makes
participants to overrepresent some of the population subgroups compared to the population
of interest. Participation may be selective with respect to variables which are known for all
persons invited to a survey, or with respect to variables which are to be measured in the
survey. The former can be solved much easier than the latter one. If non-participation is
present, a sample is representative with respect to the target population if non-participation

1Some studies use the term selective non-response (or selective nonresponse), and sometimes it is unclear
whether the terms refer to decisive denial based on the topic of the study, or more generally as we see the term.
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is not selective or if the non-participation can be adjusted with respect to the background
variables and the non-participation is not associated with the variable of interest.

Not only can non-participation increase uncertainty of the estimates (or decreases pre-
cision) because of the smaller sample size but it also causes systematic error called non-
participation bias or selection bias to the estimates. We say that, an estimator is unbiased
if its expected value is the same as the true value in the population. The higher the non-
participation, the more concerns it raises, creating larger potential bias (Nishimura et al.,
2016).

Let us demonstrate how association between participation and the smoking may bias
the results, see Figure 1.1. For the sake of example, let us assume that the true smoking
prevalence in the population is known (usually it is not), and that is 0.2, 0.3, 0.4, 0.5, and
0.6 for five consecutive studies, respectively (black dashed line with filled circles). Let us also
assume that the probability of participation, often called participation rate, is decreasing more
rapidly for smokers than for non-smokers. For smokers, let the participation probability be
0.80, 0.65, 0.50, 0.35 and 0.20 for each study from the first to the fifth (red line with triangles).
For non-smokers, let the participation probability be 0.80, 0.75, 0.70, 0.65 and 0.60 for each
study from the first to the fifth (blue line with diamonds).
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Figure 1.1: Artificial demonstration about how selective non-participation affects the estima-
tion of smoking prevalence.

On the right panel of the Figure 1.1 we can see that the estimated smoking prevalence
(dark green dashed line with filled triangles) is lower in the most time points than the true
prevalence (black dashed line with filled circles). For the first study year, the estimation is
unbiased because the participation probabilities for smokers and non-smokers were the same
(left hand side). As the participation probabilities become more different between smokers
and non-smokers, the participants’ estimate becomes more distant to the true prevalence in
the population. As the participation probabilities between the two groups are more differ-
ent during the later years than in the beginning, there is also bias in the slope of smoking
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prevalence trends. Between the fourth and fifth time point, the prevalence estimated from
participants appears to decline although the true trend increases. If the true trend had been
decreasing, the estimated prevalence would also have been lower in that case, because of the
selectivity mechanism.

This thesis utilises data from the National FINRISK Study (Borodulin et al., 2017), which
is a series of cross-sectional surveys conducted by the National Institute for Health and Wel-
fare. The FINRISK Study consist of consecutive surveys conducted once every five years in
Finland during 1972–2012. The participation rate in these surveys has decreased noticeably.
In 1972 the participation rate in the health examination was about 90% (Harald et al., 2007),
while in 2012 it was only about 60% (Borodulin et al., 2013).

Previous studies have suggested that the FINRISK data are selective with respect to
smoking and alcohol usage (Jousilahti et al., 2005; Tolonen et al., 2005; Karvanen et al.,
2016). This creates a potential bias to the population estimates. These kinds of biased
estimates cannot be generalized to the entire population. The biased results may critically
misinform the decision-makers.

In this thesis, we develop statistical approaches capable of taking into account selective
non-participation. We demonstrate that these approaches can reduce selection bias. We
also compare the developed approaches with other commonly used methods, and apply the
developed approaches for the FINRISK data to estimate the prevalences of daily smoking and
heavy alcohol consumption.

In Article I, a multiple imputation (MI) approach is presented as a potential solution
for the missing data problem. The paper utilises additional survey data called re-contact
data collected among non-participants. The prevalence estimates for smoking and alcohol use
are obtained. Articles II and III develop a different solution when re-contact data are not
available, but follow-up data are. These two papers estimate the prevalence of daily smoking.
Article IV applies the method of Article III to the heavy alcohol consumption. The obtained
prevalence estimates in Article I–IV are higher than the estimates based on participants.
Earlier results are based on participants only.

In Chapter 2, the data used in this thesis are presented. Chapter 3 describes the missing
data problem. Chapters 4 and 5 describe the approaches of Article I and Articles II–IV,
respectively. The Chapter 6 discusses the results and the implications of the work done in
this thesis. Appendix A lists errata of included articles.
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Chapter 2

Data from the National FINRISK
Study

2.1 Survey data

The National FINRISK Study is a series of cross-sectional surveys or, more precisely, HESs
conducted in Finland once in every five years (Borodulin et al., 2017). The purpose of the
study is to investigate the health of adult population (25–74 -year-olds) of Finland. The first
FINRISK Study survey took place in 1972 in North Karelia and Northern Savonia (Puska
et al., 1973). At that time the study was called the North Karelia Project (Pohjois-Karjala
-projekti in Finnish) (Puska et al., 1973). Later, new regions were added to the study (see
Article II), and in 2012 the regions were North Karelia, Northern Savonia, Turku and Loimaa
area, Helsinki and Vantaa area, and Oulu region. In 2007 Lapland was also part of the study
(Peltonen et al., 2008). Recently, the name FINRISK has changed to FinTerveys and the
design of the study has also changed. In this thesis, the data utilised are from the surveys
conducted in 1972–2012 (Puska et al., 1973; Vartiainen et al., 1993; Korhonen et al., 1999;
Laatikainen et al., 2003; Peltonen et al., 2008; Borodulin et al., 2013, 2017).

In The FINRISK Study, the participation rate has decreased during the period 1972–
2012 (Harald et al., 2007; Borodulin et al., 2013). The participation variable can be defined
as (1.) participation in the health examination, (2.) as a returning of a questionnaire, or
(3.) as answering to the question regarding variable of interest. In Article I the first and
the second definition are used, Articles II–IV use the third one. In 1972 the participation
rate (1.) to a health examination was 88% while in 2012 it was only 58%, see Table 2.1.
Similar phenomenon has also been observed in other countries (Galea and Tracy, 2007). Low
participation potentially increases non-participation bias (Nishimura et al., 2016), which has
also been briefly demonstrated in the example of Figure 1.1.

The National FINRISK Study data had in total 98, 050 invitees during 1972–2012, out of
which 72, 340 persons participated in health examination, and 1, 854 persons returned only
a study questionnaire. The yearly counts of invitees and participants are reported in Table
2.1. The number of invitees available in this thesis is slightly different to what is reported
in Borodulin et al. (2017), because some parts of the FINRISK data were not available for
us. The re-contact questionnaire data was collected in 2002, 2007 and 2012 in all areas. In
2002 and 2007 the questionnaire data without a health examination was collected in Lapland
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(Peltonen et al., 2008).

Table 2.1: The number of invitees and participants of the FINRISK data. The questionnaire
study of Lapland in 2007 (n = 1260) is not reported in the table.

1972 1977 1982 1987 1992 1997 2002 2007 2012 All years

Invited 12, 440 11, 359 11, 395 7, 931 7, 927 11, 500 13, 498 12, 000 10, 000 98, 050
Participants 10, 938 10, 197 9, 347 6, 478 6, 051 8, 446 8, 798 6, 258 5, 827 72, 340
Non-participants 1, 502 1, 162 2, 048 1, 453 1, 876 3, 054 3, 918 4, 007 3, 576 22, 596
Only questionnaire 0 0 0 0 0 0 782 475 597 1, 854

The survey design has varied over the years (Borodulin et al., 2017). The 1972 survey
followed systematic sampling with respect to birth date and stratified sampling regarding area
of recidence. In 1977 the survey applied simple random sampling stratified between areas.
The third survey in 1982 utilised a stratified sampling between 10-years age-groups within
the areas, and since 1987 the sampling design has been stratified sampling between 10-years
age-groups within gender and areas.

The health examination of the FINRISK Study consists of for instance measurements
of height and weight, systolic and diastolic blood pressure, pulse, circumference of waist and
hip, and blood samples. Information of sample members’ sociodemographic factors, the use of
health services, diseases and symptoms, health behaviour (alcohol and tobacco use), nutrition
habits and psychosocial factors are collected by questionnaire (Peltonen et al., 2008).

In 2002–2012 the FINRISK Study conducted a survey among non-participants. We call
these surveys as re-contact surveys, as the non-participants of the initial survey has been
contacted again, and subsample data of non-participants have been collected. For these kinds
of surveys, there are three types of the invitees: participants, who participated initial survey,
re-contact respondents, who where non-participants of the initial survey but returned the
re-contact questionnaire, and non-participants who participated in the neither of the rounds.

2.2 Register data and record linkage

The survey data have been linked to multiple register data sets using the personal identification
code. In Finland, the data obtained via register linkage is available for both participants and
non-participants. The registers linked are Care Register for Health Care (HILMO) (National
Institute for Health and Welfare, 2017), Cause of Death Register (Statistics Finland, 2014),
and The Register of Completed Education and Degrees (Statistics Finland, 2017). The follow-
up data is obtained from Care Register and Cause of Death Register. The HILMO register
holds data about each person’s hospital visits or hospitalisations with diagnoses (ICD-codes).
The HILMO register holds hospitals visits since 1969. These additional data in this thesis
contain information both on participants and non-participants, which is not possible in many
countries.
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2.3 Sources of auxiliary information in the FINRISK Study
surveys

There are three sources of data for investigating the selectivity mechanism in this thesis. The
first source is the data from survey frame, which typically hold demographic information,
e.g. gender, age and location of living. We call these data as background data. Background
data allow to investigate if participation is selective with respect to the background data, but
the participation may still be selective with respect to the rest of the variables. Background
data may be used to evaluate the differences between participants and non-participants with
respect to age, for example, if it is available.

The second source is survey data consisting of data from the actual surveys and the
surveys among non-participants. The variables of the survey data are called survey variables
including the variables of interest. The variables of interest are daily smoking and heavy
alcohol consumption, and we call them as risk factors as they increase the risk of diagnosed
diseases. Survey data allow the comparison of survey participants and non-participants to
some extent, but as only a sample of non-participants is available, the question if the re-
contacts represent the non-participants of the actual survey remains. Only if we assume that
the participants of the re-contact survey (aka. re-contact respondents) are a random sample
of the non-participants, then we can compare participants’ and re-contacts’ estimates, and
therefore evaluate the average health of these groups.

The third source is register-based follow-up data, which may be very useful in estimating
the selectivity mechanism. For the FINRISK data, register data about disease diagnoses
are available and can be used to evaluate the selectivity mechanism. Information about the
relationship of the risk factors and disease diagnosis is central because the risk factors cannot
be observed from the registers. Data about the disease diagnoses can be used to indicate
whether there is a difference in the risk factors between participants and non-participants.

2.4 Notation

Let us define the notation for the data variables. Let M , T , X and Y stand for the partici-
pation indicator, disease outcome, background variables and risk factors, respectively. Let M
take value M = 1 for participants and M = 0 for non-participants. The variables T stand for
the age at the time of the first disease diagnosis as well as censoring status. The variables X
consist of age at the time of a survey (baseline), gender and location of living. Regarding the
work done in Article IV, the X also contains education. Notation V = (X,Y, T ) is used to
refer to all data.

2.5 Differences between participants and non-participants

In the FINRISK Study, the differences in health between participants and non-participants
have been observed. First, it is known from the survey frame that the non-participants are
more often men than women (Jousilahti et al., 2005; Harald et al., 2007), and are younger
persons than the participants (Peltonen et al., 2008; Borodulin et al., 2013). Second, surveys
among non-participants have shown that the non-participants are more often smokers (Tolo-
nen et al., 2005; Karvanen et al., 2016) and heavy alcohol consumers (Karvanen et al., 2016),
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have lower socioeconomic status than the participants (Harald et al., 2007), and are more
often single than married (Tolonen et al., 2005). Third, studies utilising register-based data
found out that non-participants have a higher total risk of death (Harald et al., 2007), and
also a higher risk of smoking-related and alcohol-related death (Jousilahti et al., 2005).
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Chapter 3

Missing data

Missing data in a survey are described by the terms item non-response or unit non-response
(Little and Rubin, 2002, p. 6). In the unit non-response, a person does not participate in
a study at all, and in the item non-response a person participates but does not provide an
answer to a particular question. Both of these cause missing data which need to be taken into
account in the analysis. The unit non-response yields missingness to both questionnaire based
and physical measurement based data, while the item non-response makes only the values of
particular variable(s) missing.

3.1 Types of missingness

Modelling of missing data (Little and Rubin, 2002) is guided by the nature of missingness.
Traditionally, missing data have been classified into three categories, which are called miss-
ing completely at random (MCAR), missing at random (MAR) and missing not at random
(MNAR) (Rubin, 1976). Seaman et al. (2013) presented a five class classification of miss-
ingness distinguishing between realized missingness and everywhere missingness. The classes
are realized MCAR, everywhere MCAR, realized MAR, everywhere MAR and MNAR. We
present types of missingness according to this classification.

Let us now denote the observation vector as V , and missingness vector as M . The miss-
ingness vector M indicates which values of V are observed and which missing. Let ṽ be the
realized observation vector which may also contain missing values, and let m̃ be the realized
missingness vector. Now, let gψ(M = m|V = v) be a model for the missingness with parame-
ters ψ. Let v and v∗ be two values of the random variable V . Now, data are realized MCAR
if for all ψ

gψ(m̃|v) = gψ(m̃|v∗) for all v and v∗. (3.1)

Data are everywhere MCAR if for all ψ

gψ(m|v) = gψ(m|v∗) for all m, v and v∗. (3.2)

In Example 1.1, the assumption of realized MCAR would mean that on the condition of
the realized pattern of missingness the participation does not depend on smoking or other
variables. The everywhere MCAR would mean the same for any pattern of missingness.

For the sake of the next two classes let o(V,M) be observed data (random variable) and let
o(ṽ, m̃) be realized value of o(V,M). The operator o(·, ·) picks the values of the first argument,
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which are observed according to the second argument. Now, data are realized MAR if for all ψ

gψ(m̃|v) = gψ(m̃|ṽ) for all v where o(v, m̃) = o(ṽ, m̃). (3.3)

Again, let v and v∗ be two values of the random variable V . Now, data are everywhere MAR
if for all ψ

gψ(m|v) = gψ(m|v∗) for all m, v and v∗ where o(v,m) = o(v∗,m). (3.4)

The implications between the types of missingness are represented in Figure 3.1. The classes
realized MCAR and realized MAR operate only on fixed (observed) missingness vector m̃,
and classes everywhere MCAR and everywhere MAR operate on arbitrary missingness vector
m. Realized MAR assumption is not as restrictive as realized MCAR and everywhere MCAR
as it allows missingness to depend on the observed data but not on the missing data for fixed
missingness vector m̃. In Example 1.1, data with MAR could have different participation
probabilities for men and women or for different study years, but the participation cannot
depend on missing data on smoking. Everywhere MAR assumption is similar, but it allows
missingness vector m to be arbitrary.

Figure 3.1: Implications between the definitions of missingness types in Equations (3.1)-(3.4).

If data do not belong to any of the previous four classes, data are MNAR. The MNAR
data are difficult to analyse, because the missing data mechanism cannot be estimated without
information on the actual values which are missing. In some cases this information can be
obtained based on auxiliary data or previous measurements. Example 1.1 has MNAR data
because participation is selective with respect to the variable of interest (smoking) which is
missing for non-participants.

If the missing data mechanism is MNAR we say that it is non-ignorable, and otherwise the
mechanism is said to be ignorable. The concepts ignorable or non-ignorable refer to whether
or not the mechanism can be ignored in the likelihood of the model (Little and Rubin, 2002).

3.2 Statistical methods for handling of missing data

Statistical methods for analysing data with missing values can be divided into four non-
exclusive classes: complete case methods, weighting methods, imputation methods, and
model-based methods (Little and Rubin, 2002, p. 19).

The complete case analysis uses only the observations with all variables recorded. The
observations with one or more missing values are excluded from the analysis. Complete case
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analysis is easy to use but it may result in seriously biased results if MCAR assumption
does not hold (Little and Rubin, 2002, p. 41). In the Example 1.1. the data are MNAR
but analysis utilises the MCAR assumption. The estimated smoking prevalence is biased in
comparison to the true population prevalence.

A common analysis approach in survey sampling is to utilise inverse proportional weighting
(IPW), where the weights are inverses of the sampling probabilities (Thompson, 1997). This is
particularly used in stratified sampling where individuals belonging to different groups have
different sampling probabilities. The weighting approach called post-stratification is often
applied to survey data with non-participation (Brick and Kalton, 1996). If data are missing
due to design, then the weights are known and otherwise they must be estimated from the
data (Brick and Kalton, 1996; Little and Rubin, 2002, Chapter 3). For post-strafication,
the missing data are due to non-participation, not due to design. Thus, the weights need to
be estimated. Another method is propensity-score weighting (Rosenbaum and Rubin, 1983),
which is a weighting based method for the situation where many variables explain missingness
(Lunceford and Davidian, 2004). These approaches utilise implicitly the MAR assumption.
The results are biased if data are MNAR (Brick and Kalton, 1996).

The multiple imputation (MI) method (Rubin, 1987) replaces the missing values with
generated values. The artificial values may be obtained using other observations either from
the same data set (hot-deck imputation) (Andridge and Little, 2010), different data set (cold-
deck imputation), or be model-based.

The model-based methods utilize a model for observed data, which can be described using
the likelihood function. First, a model for the data are built, then one must integrate with
respect to the missing data. Bayesian modelling treats the model parameters and missing
data the same way by integrating over them. For a frequentist analysis the EM algorithm
(Dempster et al., 1977) or numeric integration is used. Both Bayesian modelling and model-
based MI generate multiple artificial complete data sets. Calculating an average over an
artificial data set gives an estimate of the prevalence of a risk factor. These estimates are
combined into the final estimate.

3.3 Approaches for the MNAR problem

In general, the estimation for MNAR problems requires some additional information or as-
sumption(s). If the data are longitudinal, then missing data can be predicted based on
a parametric model and other measurements on the same individual, even when data are
MNAR (Little, 1995; Hedeker and Gibbons, 1997; Kenward and Molenberghs, 1999; Siddique
and Belin, 2008). Additional information may origin from auxiliary data or informative pri-
ors (if utilising Bayesian methods). For a cross-sectional survey data, such as the FINRISK
data, suitable sources of auxiliary information are surveys conducted among non-participants
(re-contact survey data) and data obtained through registers. If the assumptions provide the
use of additional information, those can be made regarding the parameters or the structure
of the model, or functional form of the model. Sometimes assumptions are implemented util-
ising prior distributions (Bayesian methods). When it comes to the FINRISK data, we are
convinced that the smoking and alcohol consumption habits could affect the participation,
and that is why MNAR assumption cannot be excluded in advance (see Section 2.5).
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Chapter 4

Multiple imputation

4.1 Overview

Single value imputation does not take the uncertainty (variation) into account, leading to
underestimation of the variance of the estimator. This weakness is avoided in multiple impu-
tation (MI) (Little and Rubin, 2002; van Buuren, 2012), which is a three-step procedure:

1. Imputation: Generate values to fill in missing data multiple times, e.g. D = 5 times.
This step results in D complete data sets.

2. Analysis: Analyze each data set resulting D analysis results.

3. Pooling: Pool the analysis results to a single final result.

The idea of multiple imputation is based on Bayes’ theorem (Little and Rubin, 2002),
see Chapter 5. First, let data V consist of its observed data Vobs and missing data Vmis,
V = (Vobs, Vmis), where Vobs = o(V,M) with respect to notation used in Chapter 3. The aim
of statistical analysis is to estimate a quantity θ, which has a posterior distribution p(θ|Vobs)
given the observed data. This can be written as

p(θ|Vobs) =

∫
p(θ|Vobs, Vmis)p(Vmis|Vobs)dVmis, (4.1)

where p(θ|Vobs, Vmis) is the full data posterior, and predictive distribution p(Vmis|Vobs) is
the conditional distribution of missing data given the observed data. Multiple imputation

approximates the integral of Equation (4.1) by generating independent imputations V
(d)
mis ∼

p(Vmis|Vobs) and then calculating the average over the imputations, which approximates the
posterior

p(θ|Vobs) ≈
1

D

D∑

d=1

p(θ|V (d)
mis , Vobs). (4.2)

The mean of θ can be approximated as

θ = E[θ|Vobs] ≈
∫
θ

1

D

D∑

d=1

p(θ|V (d)
mis , Vobs)dθ =

1

D

D∑

d=1

E(θ|V (d)
mis , Vobs) =

1

D

D∑

d=1

θ̂d, (4.3)
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where θ̂d is the full data estimate for the dth imputed data set (V
(d)
mis , Vobs). Now, the variance

can be estimated by

Var(θ|Vobs) = E[Var(θ|Vmis, Vobs)|Vobs] + Var[E(θ|Vmis, Vobs)|Vobs] (4.4)

≈ 1

D

D∑

d=1

Var(θ|V (d)
mis , Vobs) +

1

D − 1

D∑

d=1

(θ̂d − θ)2, (4.5)

where Var(θ|V (d)
mis , Vobs) is the variance of θ calculated from imputed data set, and θ̂d and

θ were defined in Equation (4.3). Thus, the complete case methods can be used for each
imputed data set.

In practice, it is important how the multiple imputation model for the distribution p(Vmis|Vobs)
is built and estimated. As imputations are drawn from the imputation model, a problem oc-
curs if explanatory variables have missing values. Multiple Imputations by Chained Equations
(MICE) is an approach which solves this problem (van Buuren and Groothuis-Oudshoorn,
2011; van Buuren, 2012). At first step, MICE-algorithm samples initial imputations from the
data. Then it utilises for each variable a fully conditional specification, which is a regression
model defined by the user. Imputations for all variables with missing data are then gener-
ated at each iteration of the algorithm, and preferably 50 iterations are needed (van Buuren,
2012). The MICE approach does not guarantee the imputations to converge to a valid joint
distribution, but this problem does not occur when variables with missing data are always
missing together (Molenberghs and Kenward, 2007, p. 114). This holds in situations where
we apply MICE.

4.2 Application of multiple imputation to the FINRISK data
with re-contact survey

Article I analyses the FINRISK 2012 data containing re-contact survey data from the non-
participants of the health examination. Such data are collected in two phases. First, a
HES survey data are collected. Second phase collects a questionnaire data from the non-
participants of the first survey. In this context, persons who participated the HES survey are
called participants, persons who returned the re-contact questionnaire are called re-contact
respondents, and persons who did not respond neither initial survey nor re-contact ques-
tionnaire are called non-participants. The variables of interest are daily smoking and heavy
alcohol consumption. These kind of data provide useful additional information for analysing
survey data with MNAR missingness.

For these kind of data multiple imputation need to be tailored to match the nature of the
data. In its basic form, multiple imputation utilises MAR assumption, but the missingness are
MNAR with respect to participation to the health examination. If re-contact data are avail-
able, it is possible to assume that the re-contact respondents represent the non-participants
and that is why the data are MAR. In Article I we assumed that the re-contact respondents
represent all non-participants when adjusted for background variables. Applying this assump-
tion with the MICE algorithm requires using a model, which has different parameters for the
participants and re-contact respondents. Multiple imputations for imputed variables are car-
ried out using a regression model with fully conditional specification (van Buuren, 2012) and
the rest of the variables are covariates in the MI model. The adjustment for the background
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variables can be made by using them as covariates in the MI model. If follow-up data are
available, it can be used to investigate the validity of our modelling assumption. For the
FINRISK 2012, retrospective follow-up data were not available. Instead, similar prospective
data about hospital visits was utilised as a surrogate. In this case an association between the
imputed variables and the number of hospital visits are utilised.

In Articles I and II the weighting has been applied to the imputed data. Because of the lack
of detailed documentation for some of the older surveys, the weighting for the FINRISK data
in Article II was not straightforward. The weights were based on population data obtained
from Statistics Finland. For years 1972–1982 only approximate weights are available because
the population data were neither available for the precise time of the sampling, nor available
for municipalities which do not exist anymore.
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Chapter 5

Bayesian modelling

5.1 Overview

Bayesian modelling is a paradigm, which utilises Bayes’ theorem

p(θ|V ) =
p(V |θ)p(θ)∫

θ′ p(V |θ
′)p(θ′)dθ′

(5.1)

to update the prior probability distribution p(θ) with information of the data V via likelihood
p(V |θ). The left hand side of the Equation (5.1) is called posterior (probability) distribution.

The prior probability distribution, or just prior distribution, must not be based on data
which are to be analysed. The prior distribution may be based on previous data or expert
opinion (O’Hagan et al., 2006). The prior distribution can be informative or uninformative.
An informative prior holds subjective information about the parameter. Uninformative prior
or vague prior reflects the absence of available information.

The task of Bayesian inference is to compute the posterior distribution p(θ|V ) of the
parameters. To complete this task, the integral in the denominator in the Bayes’ theorem
need to be calculated. When there are a lot of parameters, the integral is often too difficult to
compute, and many methods generate samples of the posterior distribution using simulation.
Markov chain Monte Carlo and importance sampling are often used algorithms for generating
posterior samples (Robert and Casella, 2004).

Bayesian modelling is particularly useful, for instance, when multiple data sources are
utilised (Spiegelhalter and Best, 2003), modelling requires a hierarchical structure (Gelman
et al., 2013, Chapter 15), or when parameter uncertainty is important (Robert, 2007).

In the context of missing data, Bayesian modelling is useful because it allows setting
up a joint model for observed data, missing data and parameters. Bayesian inference does
not distinguish between missing data and parameters, being a reason why missing data are
naturally handled in the model fitting process. As a consequence any separate imputation
step is not needed.

Data augmentation (DA) (Tanner and Wong, 1987) is a Bayesian method of simulating
posterior of θ when data V are partly missing. In DA the imputations and parameters are
simulated iteratively from its full conditional probability distribution at each step t. First,
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start with initial values θ(0) and repeat following procedure:

Generate V
(t+1)
mis ∼ p(Vmis|Vobs, θ(t))

Generate θ(t+1) ∼ p(θ|Vobs, V (t+1)
mis )

until the chains have converged. The convergence can be evaluated using Brooks-Gelman-
Rubin -diagnostics (Brooks and Gelman, 1998). The algorithm is a special case of Gibbs’
sampler (Gelfand et al., 1990), which samples each parameter from its full conditional at each
timestep.

5.2 Application of Bayesian modelling in the analysis of survey
data with follow-up

There are situations when follow-up data are useful for prevalence estimation of a risk factor
under MNAR missingness. In Articles II, III and IV we consider the situation where follow-up
data are available for both non-participants and participants of a survey study, and follow-up
data are informative about the risk factor of interest. We first describe what data are used in
each article, and then tell about the modelling.

Articles II and III focus on the prevalence of daily smoking and Article IV on the prevalence
of heavy alcohol consumption. Article II uses 1972–1997 surveys, utilises follow-up of smoking-
related diseases data from the date of health examination to the end of 2011. Article III
utilises 1972–2007 surveys, follow-up data of the same diseases as in Article II from the date
of health examination to the end of 2012. Neither of the Articles II or III have data from
the education register. Article IV estimates the prevalence of heavy alcohol consumption in
1987–2007 surveys, uses follow-up data of diseases related to heavy alcohol usage starting
from the survey data to the end of 2014. This article uses data from the education register.

The data about diseases and deaths can be utilised to estimate the prevalence of daily
smoking although the survey data are MNAR. This is possible because daily smoking is
an important predictor of diseases such as lung cancer and chronic obstructive pulmonary
disease (COPD) (Doll and Hill, 1956; Wynder and Hoffmann, 1994; Cornfield et al., 2009).
Also, observed lung cancer or COPD event indicates that the person is a daily smoker with
high probability. Thus, information about disease events and deaths can be utilised to fill in
missing values of an associated risk factor. The same applies for heavy alcohol consumption
if follow-up data for alcohol-related diseases are available.

In order to take into account the advantages provided by these two linked data sets, a
Bayesian model, consisting of three sub-models, is needed. The sub-models are:

1. participation model, in which participation in a survey M = 1 is explained by the risk
factor Y and background variables X from the survey frame.

2. risk factor model to explain the variability of a risk factor Y using background variables
X.

3. survival model, which describes the relationship between the risk factor Y and diseases
obtained from follow-up data T adjusted for background data X.

15



These three sub-models are then utilised together as a Bayesian model for the data.
Based on Bayes’ theorem, the missing data of smoking can be drawn from the full condi-

tional distribution for the non-participants

y ∼ p(Y = y|M = 0, X, T ) ∝ P (Y = y|X)P (M = 0|Y = y,X)P (T |Y = y,X).

As all the missing values in Y are for non-participants who have M = 0, the selectivity
parameter of a participation model is not identifiable without the follow-up data. In Article III
we found out that an informative prior to this parameter is needed, or otherwise the MCMC-
chains in posterior computation may fail to converge. An alternative strategy is utilised in
Article II, which assumes that M and Y are conditionally independent given background
information X and follow-up data T . Thus data are MAR when follow-up data are available.
This is not the same as having MAR assumption with respect to the original survey data (see
Section 4.2). In the Article II the survival times were explicitly imputed, but in Articles III and
IV the censoring mechanism was taken into account in the likelihood, and thus imputations
for event times were not needed.

The Bayesian model was implemented using Just Another Gibbs Sample (JAGS) -software
(Plummer, 2003), and R (R Core Team, 2014) and rjags -package (Plummer, 2015) was used
to fit the model. The high number of missing values and highe autocorrelations between the
model parameteres created a computational challenge for the model fitting. It took several
days to fit the model for the FINRISK data.
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Chapter 6

Discussion

This thesis deals with selective non-participation in HESs and the particular situation where
survey data are MNAR. The problem was studied utilising the National FINRISK Study data
with interest in estimating the prevalences of daily smoking and heavy alcohol consumption.
It was known based on previous studies that participation in the FINRISK Study was associ-
ated with smoking and potentially associated with alcohol consumption. Studies from other
countries report that both smoking (Christensen et al., 2015) and alcohol use (Zhao et al.,
2009; Torvik et al., 2012; Gorman et al., 2014; Dawson et al., 2014; Boniface et al., 2017) are
associated with participation.

We proposed two approaches to this problem. First, survey data collected among non-
participants of health examination were used together with multiple imputation tailored for
this problem (Article I). The proposed approach in the Article I utilises multiple imputa-
tion with an assumption that the probability distribution of risk factors for non-participants
p(Y |X,M = 0) can be estimated from the data of re-contacts. The prevalences of daily smok-
ing and heavy alcohol consumption were observed to be 20–50 percentages or 2–4 percentage
points higher than what was observed based on participants only. An alternative assumption
that the re-contact respondents represent non-participants after adjustment for age and gen-
der was considered and evaluated based on data about past hospitalisations. That assumption
was supported by the data.

The supported assumption holds for the utilised data set, but it does not necessarily
hold for other data. This is why it is important to evaluate the modelling assumptions if
possible. If retrospective hospitalisation (follow-up) data are available, the use of such data is
recommended for assumption evaluation. The use of past hospitalisations allows assumptions
to be evaluated as soon as data are available. Currently, the re-contact data consist of only
the questionnaire, which limits the use of proposed multiple imputation approach to those
variables which are obtained from questionnaire.

Second, a HES data linked to follow-up data were utilised to estimate the smoking preva-
lence (Articles II and III) and the prevalence of heavy alcohol consumption (Article IV). The
structure of the missingness and the model was described using a graphical representation
(Karvanen, 2015). Two versions of a parametric Bayesian model for the data were developed.
The first model assumed that the missingness mechanism is MAR if both survey data and
follow-up data are used to predict missing values. More precisely, probability distribution of
risk factors Y given background information X and follow-up data T does not depend on
participation M , that is p(Y |X,T,M = 0) = p(Y |X,T,M = 1). The second model called

17



Bayesian MNAR model (Articles III and IV) handles the situation where missingness mecha-
nism is MNAR although the survey and follow-up data are used to predict the missing values.
The modelling in these articles is based on assumption p(T |X,Y,M) = p(T |X,Y ), which is
that the disease risk does not depend on participation given the background data X and risk
factor Y . The estimation required an informative prior regarding the parameter describing
the relationship between smoking (or alcohol use) and participation to allow the identifiabil-
ity of the model. The posterior distribution was computed using Markov chain Monte Carlo
methods. The identifiability of the Bayesian MNAR model (Article III) was demonstrated
using simulation.

A major limitation of the Bayesian MNAR approach is that it requires follow-up data to
be available for both participants and non-participants. Years or even decades of follow-up are
needed to observe sufficient amount of smoking or alcohol related disease events to estimate
the model parameters. The model needs to be carefully built to take into account all aspects
of the data.

This thesis has also produced information about the differences between participants and
non-participants. It was observed that young persons do not participate as often as older
people and that participation has decreased in all age groups (Article II). Among the young
male respondents the percentage of heavy alcohol consumers was estimated to be 15.9%
(95% confidence interval: (12.5, 19.4)) which was higher than in other demographic groups
(Article I). The cumulative hazards of smoking-related diseases were about six times higher
for smoking men than non-smoking men, and about ten times higher for smoking women
than non-smoking women (Article II). Non-participants have higher rates of smoking-based
and alcohol-based diseases than participants among men and women (Articles III and IV).

The estimates of smoking prevalence and heavy alcohol consumption prevalence are key
epidemiological results. For men, the (posterior) mean estimates of smoking prevalence in
North Karelia and Northern Savonia were about 50% in 1972 and about 30% in 2007 according
to Bayesian MNAR model (Article III). For women, corresponding mean estimates were 12–
13% in 1972 and 17–20% in 2007. The 2012 estimates were 28.5% for men and 19.0% for
women based on multiple imputation (Article I). A Bayesian modelling approach presented
in Article II results in mean estimates of smoking prevalence to be 52% in 1972 and 32% in
1997 for men and 12% in 1972 and 18% in 1997 for women.

Both proposed approaches yield higher posterior expectations of prevalences and wider
uncertainty estimates for smoking than the complete case analysis. For these data, the dif-
ferences appear to be higher in 1977–1992 than in the rest of the years. It can be noticed
that the Bayesian MNAR model finds only about one percentage point difference in 2007 for
smoking prevalence, while Karvanen et al. (2016) estimates five percentage point difference
using multiple imputation approach and re-contact data. Similarly, corresponding multiple
imputation approach (Article I) founds a four percentage point difference for 2012. It can be
speculated that this difference is because in 2007 only five years of follow-up were available,
although it takes 20 years of daily smoking to develop a lung cancer or COPD.

Also, the proposed approaches provide wider credible and confidence intervals than the
complete case analysis. Smaller uncertainty of the complete case analysis estimates are based
on assumption that does not hold for the data. This being the case, we can say that the pro-
posed approaches provide more realistic estimate of uncertainty than complete case analysis.

The prevalence estimates for heavy alcohol consumption are obtained from Bayesian
MNAR model. For men, these prevalence estimates are about 10% in 1987 and about 13% in
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2007. The highest estimate was 23% in 2002. For women, corresponding estimates are about
3% in 1987 and about 6% in 2007. The prevalence estimates of 2012 are 9.4% for men and
4.8% for women based on multiple imputation approach.

It appears that more attention should be paid to missing data in the analysis of the
HES data. Our results suggest that earlier results based only on the participants’ data are
biased, underestimate the uncertainty, and that earlier results give overly positive image about
the prevalences of daily smoking and heavy alcohol consumption. To provide more reliable
estimates, the association between participation and the variables of interest need to be taken
into account in the analysis. Bayesian modelling or multiple imputation approach can be used
to analyse data with selective non-participation and MNAR missingness mechanism. Both
of these approaches require additional data along with the HES data. For the future data
collection, we would recommend to continue collecting re-contact data and to study potential
modelling assumptions based on additional data set linked to the data. Potential topics for the
future research are the improvements of computational efficiency for data with large number
of missing values and the simultaneous use of re-contact and follow-up data.
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Appendix A: Corrections to articles

In Article II Section 3.1, p. 5 the first of the two equations should be:

Ti = (ti, ri) =

{
(ti, 1), if an event is observed

(ti, 0), if an event is right censored,

that is the value ri = 1 should indicate observing and ri = 0 is right censoring.
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Introduction

Health examination surveys (HES) are among the key 
data sources for the data-driven planning of national 
health policies. If the participants of the survey are a 
representative sample of the population of interest, 
then simple statistical estimates, such as sample aver-
ages, provide reliable support for decision-making. A 
major threat to the representativeness of survey data is 
selective non-participation. Under selective non-par-
ticipation, survey participants do not represent the 
population of interest, which leads to bias in popula-
tion-level health indicators. By health indicator, we 

mean a health-related population statistic, such as the 
prevalence of smokers. For example, if healthy people 
are more willing to participate in a survey than people 
with poor health, the health indicators give an overly 
positive impression of the health of the population. 
This makes the data misleading.

The sampling frame often provides background 
information, such as sex, age and region, on the sam-
ple members. This information reveals whether some 
demographic groups are under- or over-represented 
among the participants compared to non-participants. 
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However, this information is insufficient to assess 
whether or not the non-participation is selective with 
respect to variables of interest.

Record linkage of HES studies with register-based 
data has shown that non-participants have higher 
alcohol consumption [1,2], and higher smoking and 
alcohol-related mortality [3], which indicates that 
participation is quite probably selective with respect 
to smoking and alcohol consumption. non-
participants also have a higher total mortality rate 
[4–6] than participants. Also, non-participants tend 
to be younger and less educated than participants 
[7,8]. They more often receive social welfare pay-
ments and have a higher unemployment rate [9].

Possible selectivity with respect to variables of inter-
est (e.g. smoking and alcohol use) cannot be assessed 
using only data from the participants. In addition to 
the survey sample, we consider two additional sources 
of information: follow-up data and re-contact data.

Follow-up data are (time-to-event) data collected 
after the survey about diagnoses of diseases, with date 
details, date of death and causes of death. Re-contact 
data are data from a survey conducted among people 
who did not participate in the original survey.

Recently, adjustment methods using follow-up [10] 
and re-contact data [11] as an additional source of 
information have been proposed to reduce the selection 
bias. Kopra et al. [10] utilised a Bayesian survival model 
to impute the values of daily smoking using register-
based follow-up data on chronic obstructive pulmonary 
disease and lung cancer. Karvanen et al. [11] used data 
on re-contact respondents’ information and evaluated 
the modelling assumption using the five years of regis-
ter-based follow-up data. A problem with these meth-
ods is that they can only be applied after the several 
years of follow-up after the survey has finished. In this 
paper, we use the same principal method as that pre-
sented in Karvanen et al. [11]. However, an important 
difference is that we evaluate the modelling assumption 
using data on past hospitalisations instead of follow-up 
data.

The aim of this paper is twofold. 1. To provide esti-
mates for prevalences of self-reported heavy alcohol 
consumption and daily smoking adjusted for non-par-
ticipation using data obtained through re-contact of 
non-participants. 2. To use register-based data on hos-
pitalisation history for the evaluation of the assumption 
about the similarity of the health of re-contacted non-
participants and the remaining non-participants.

Methods

Data

We use data from the national FInRISK 2012 sur-
vey, a HES among adults from five regions of Finland 

[12]. The survey was conducted in early 2012 with a 
total sample size of 10,000 invitees aged 25–74 years. 
The invitees were sampled from the national 
Population Information System using simple random 
sampling stratified by region, sex and 10-year age 
group. The respective Ethics Committee approved 
the survey when it was conducted. Written informed 
consent was obtained from survey participants.

Survey invitees received a letter of invitation with 
assigned time and place for an appointment (health 
examination), and a questionnaire to be filled in at 
home and returned at the health examination. One to 
two days before the appointment a reminder SmS 
message was sent to encourage the invitees to partici-
pate. If a person did not show up for an appointment, 
he or she was contacted to agree the time of a new 
appointment via a phone call or by a reminder post-
card if the phone number was not known. Persons 
who participated in the health examination are 
referred to as participants.

After the original survey, a re-contact round was 
conducted. Persons who did not take part in a 
health examination received a re-contact letter in 
which they were asked to return the self-reported 
questionnaire using an envelope with pre-paid 
postage attached to the letter. This letter also con-
tained a questionnaire which was identical to the 
previously sent questionnaire. Those individuals 
who returned the questionnaire after receiving the 
re-contact letter are called re-contact respondents. 
The time lag between the original survey and the 
re-contact round was 2–5 months. During that time 
some persons may have changed their smoking or 
alcohol-use habits, but we do not expect this to 
notably alter the results.

A total of 5827 invitees participated in the survey, 
yielding a 58.3% participation rate (i.e. having both 
the questionnaire and the health examinations com-
pleted). The re-contact round resulted in 597 
returned questionnaires (14.3% of all non-partici-
pants), leaving 3576 non-participants without any 
self-reported information.

The data on background variables, sex, age and 
region, are available from the sampling frame for both 
participants and non-participants. Data on hospital vis-
its and diagnoses (ICD codes) since 1969 are obtained 
for both participants and non-participants through 
record linkage to the Care Register for Health Care 
[13] using the unique personal identification code pro-
vided for every resident in Finland. We call these data 
‘hospitalisation history data’.

The survey sample is classified into three groups 
of people;

1. Participants who returned the questionnaire and 
participated in a health examination.



Adjusting for selective non-participation  3

2. Re-contact respondents who did not participate in 
the survey after initial invitation, but did return 
the re-contact round questionnaire.

3. Non-participants who neither participated in 
health examination nor returned the re-contact 
round questionnaire.

The variables of primary interest are self-reported 
daily smoking and heavy alcohol consumption. Females 
who consumed more than 16 portions of alcohol per 
week and men who consumed more than 24 portions 
per week are defined as heavy alcohol users. One por-
tion corresponds to 12 g of pure alcohol.

Modelling approach

In this paper, we fit two kinds of models: three alter-
native models to impute missing values in data and 
one model to evaluate the modelling assumptions. 
We apply R statistical software, version 3.3.1 [14] 
and the R package ‘mice’ [15] for multiple imputa-
tions, and R package ‘pscl’ for the evaluation of the 
modelling assumptions.

The alternative modelling assumptions that we 
consider here are as follows;

1. The participants represent the whole population 
of interest.

2. The participants represent the whole population 
of interest when adjusted for background 
variables.

3. The re-contact respondents represent all non-par-
ticipants when adjusted for background variables.

Assumption (1) is a missing-completely-at-random 
(mCAR) assumption [16], leading to the complete-
case analysis where data on participants are used to 
estimate the health indicators of non-participants. If 
assumption (1) holds, the non-participation is nei-
ther selective with respect to variables of interest nor 
background variables. It means that, for example, 
the average prevalence of smoking measured from 
the participants describes the smoking prevalence 
for the whole population even without adjusting for 
background variables. This assumption is made 
implicitly when estimates based on participants only 
are reported.

Assumption (2) is a missing-at-random (mAR) 
assumption that makes it possible to use data on par-
ticipants to estimate the health of non-participants 
and, therefore, the health of the whole population 
provided that the background variables are collected. 
If assumption (2) holds, then non-participation is not 
selective with respect to variables of interest, but it 
may be selective with respect to the background vari-
ables. To estimate, for example, the prevalence of 

smoking for the non-participants, adjustment for the 
background variables is required.

The assumption (3) allows the use of data on re-
contact respondents to estimate the health of non-
participants, provided that background variables are 
collected for all invitees of a survey. This assumption 
can be interpreted as a version of the continuum of 
resistance model [17,18] where we adjust for back-
ground variables. Under assumption (3), the data 
are missing not at random (mnAR) with respect to 
HES participation, and mAR with respect to re- 
contact response.

Under assumption (3), participation may be selec-
tive with respect to variables of interest and back-
ground variables. However, the response to the 
re-contact questionnaire is not selective with respect 
to variables of interest, but it may be selective with 
respect to background information. If this assump-
tion does not hold, the health indicators of the remain-
ing non-participants cannot be estimated without 
bias unless some additional data are available.

Imputation models

We consider three different approaches imputing the 
health indicators. The approaches utilise either 
assumption (2) or (3). Assumption (1) is not used in 
imputation but is utilised if estimates based on data 
on participants only are considered to describe the 
health of the whole population. Our primary 
approach is called mI-mnAR, using multiple impu-
tation (mI) with an assumption (3). In mI-mnAR 
the missing values for re-contact respondents and 
non-participants are imputed assuming that the 
parameters of the model are different for re-contact 
respondents and participants. Two alternative meth-
ods use assumption (2), and are called mI-mAR 
and mI-mAR-nR. In mI-mAR imputation the 
model parameters are the same in all groups. The 
mI-mAR-nR method uses no re-contact (nR) data 
at all, but is otherwise similar to mI-mAR.

For each imputed variable the multiple imputations 
are carried out using a regression model (fully condi-
tional specification) [19]. The other variables are used 
as covariates in the imputation model. The imputed 
variables are daily smoking and heavy alcohol con-
sumption, which are predicted by the following covari-
ates: sex, age, region, education level, civil status, 
self-reported hypertension, self-reported high choles-
terol and recency of blood pressure and cholesterol 
measurements. These variables are collected through 
the questionnaire and they are potential predictors for 
the lifestyle indicators and the participation. Covariates 
with missing data were imputed simultaneously with 
the main variables. The imputation models are speci-
fied as in Karvanen et al. [11]. In addition, we predict 
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the number of hospitalisations for model-checking 
purposes based on the same covariates as for daily 
smoking and heavy alcohol consumption.

Evaluation of modelling assumptions

We evaluate the modelling assumptions (1)–(3) 
using the background variables and the hospitali-
sation history data. Assumption (1) is violated if 
there is an indication that either distribution of 
variables measured in the survey or distributions of 
background variables differ between participants 
and non-participants (including re-contact 
respondents). Assumption (2) does not hold if par-
ticipants and non-participants (including re- 
contact respondents) differ with respect to their 
health indicators when conditioned on background 
variables. Assumptions (2) and (3) cannot be 
tested directly because there is no estimate of 
health indicator available for non-participants. 
Instead, they are evaluated by fitting a statistical 
regression model for the number of hospitalisa-
tions by each of the three groups and using the 
background variables as covariates.

We check if the hospitalisation rates differ between 
the participants, the re-contact respondents and the 
non-participants. A difference is interpreted as an evi-
dence of differences in the health indicator distribu-
tions. If the hospitalisation rates for re-contact 
respondents can be assumed to be similar to non-par-
ticipants’ rates, then we can obtain information on the 
health of the non-participants from the re-contact data.

We utilise a zero-inflated negative binomial regres-
sion [20] as a model for the hospitalisation data to 
evaluate assumptions (2) and (3). The zero-inflated 
model consists of two parts: the excess zeros model; 
and the model for the counts. The count model uti-
lises negative binomial distribution. The excess zero 
model describes the proportion of excess zeros (zero 
inflation) in addition to the zeros from the count 
model. Thus, a zero may occur from both of the 
models – the excess zero model or the count model.

We check the assumptions using full, five-year and 
one-year hospitalisation history data. The longer the 
history, the more hospitalisation events are expected. 
A high total number of events makes it easier to 
observe differences in the counts between the groups. 
However, as the health of individual changes over 
time, hospitalisation counts from a recent period may 
better describe the health at the time of the survey.

Results

The characteristics of the collected survey data are 
described in Table I. Among participants and 

re-contact respondents, there are slightly more 
women than men. Among non-participants, the 
opposite is true, which indicates that women are 
more eager to participate. The average age of non-
participants is lower than that of both participants 
and re-contact respondents. The re-contact 
respondents seem to be less educated and more 
often single than the participants. For both men 
and women, there are more smokers among re- 
contact respondents than among participants. For 
men, the proportion of heavy alcohol consumption 
is 6.8% for both participants and re-contact 
respondents, but there is a lot of variation between 
the age groups. The proportion is much higher 
among the young re-contact respondents than 
among young participants. In the age group 25–34 
years old, the proportion among re-contact 
respondents is exceptionally high (15.9%) com-
pared to other age groups of re-contacts. Among 
the re-contact respondents of the age groups 55–65 
and 65–74, the proportion drops below the rates of 
participants. For women, in all age groups, there is 
higher heavy alcohol consumption among re- 
contacts than for participants.

Re-contact respondents seem to be more often 
smokers and heavy alcohol users than participants, 
except for heavy alcohol consumption among men 
where the prevalence is the same for participants and 
re-contact respondents.

Table II shows the results for the assumption check-
ing model. The risk of being hospitalised is higher for 
men than women, and the risk increases with age. A 
significant difference between participants and non-
participants was observed for full, five-year and one-
year hospitalisation histories, while no difference 
between re-contact respondents and non-participants 
was found for five-year and one-year histories. These 
findings indicate that assumption (2) does not hold, 
while assumption (3) is supported.

Table III presents the predicted hospitalisation 
counts per 1000 individuals for each length of hos-
pitalisation history. The proposed method, the 
mI-mnAR, has predicted counts which match the 
best with the observed full cohort counts. This 
supports the assumption (3), which states that re-
contacts represent the non-participants given their 
background variables. The match is more convinc-
ing for one-year and five-year histories than for full 
history. The hospitalisation counts for participants, 
re-contact respondents and non-participants can 
be compared with each other. It is interesting to 
see that hospitalisation counts per 1000 individu-
als are lower for female non-participants than for 
female re-contact respondents. For men, the con-
trary is true.
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Table Iv describes the prevalence of daily smok-
ing and heavy alcohol consumption estimated with 
different imputation models. mI-mnAR imputation 
results show that the point estimate of the preva-
lence of daily smoking for men is 28.5%, which is 
5.3 percentage points higher than what was meas-
ured from the participants only. For women, the cor-
responding imputed estimate is 19.0%, which is 2.5 
percentage points higher than the estimate based on 
the participants only. For smoking, the estimates 
from participants only do not lie within the 95% 
confidence interval of mI-mnAR imputations for 
men, and for women they are barely within the 

confidence interval. The point estimates by 
mI-mAR-nR are, in all cases, lower than the point 
estimates of mI-mAR and mI-mnAR.

The prevalence of heavy alcohol consumption for 
men by the mI-mnAR method is 9.4%. This is 
much higher than one would expect based on the 
heavy alcohol consumption rates of participants 
(6.8%) and re-contact respondents (6.8%). The key 
factors in the imputation of heavy alcohol consump-
tion are smoking, sex, age and region. Smoking 
strongly predicts heavy alcohol consumption in the 
estimated imputation model. Corresponding odds 
ratios for participants are 3.93 (2.87, 5.4) for men 

Table I. The averages and proportions, with their 95% confidence intervals, for background variables and health indicators.

Participants Re-contact respondents non-participants

n 5827 597 3576
Women, % 53.1 (51.5, 54.6) 53.3 (48.6, 58.0) 46.1 (44.0, 48.1)
Average age, years 49.7 (49.3, 50.0) 49.2 (48.1, 50.3) 44.9 (44.4, 45.3)
 Age group 25–34, % 18.7 (17.5, 19.9) 21.3 (17.5, 25.2) 30.5 (28.6, 32.3)
 Age group 35–44, % 18.0 (16.8, 19.2) 15.8 (12.4, 19.2) 21.7 (20.0, 23.4)
 Age group 45–54, % 22.1 (20.9, 23.4) 22.8 (18.8, 26.7) 20.1 (18.4, 21.7)
 Age group 55–64, % 23.7 (22.4, 25.0) 26.2 (22.1, 30.4) 17.7 (16.1, 19.3)
 Age group 65–74, % 17.5 (16.3, 18.6) 13.9 (10.6, 17.1) 10.1 (8.9, 11.4)
Education  
 High, % 37.6 (36.1, 39.1) 34.7 (30.3, 39.2) –
 low, % 30.9 (29.5, 32.3) 34.8 (30.3, 39.3) –
Civil status  
 married, % 52.4 (50.9, 54.0) 49.8 (45.1, 54.5) –
 Cohabiting, % 18.6 (17.4, 19.8) 17.1 (13.6, 20.7) –
 Single, % 15.4 (14.3, 16.5) 19.3 (15.6, 23.0) –
 Divorced, % 10.7 (9.7, 11.6) 11.4 (8.4, 14.4) –
 Widow, % 2.8 (2.3, 3.4) 2.5 (1.0, 3.9) –
Daily smokers, men % 23.2 (21.9, 24.5) 28.5 (24.2, 32.7) –
 Age group 25–34, % 30.4 (29.0, 31.8) 26.1 (21.9, 30.2) –
 Age group 35–44, % 24.4 (23.1, 25.7) 36.3 (31.8, 40.9) –
 Age group 45–54, % 23.1 (21.9, 24.4) 24.2 (20.2, 28.2) –
 Age group 55–64, % 24.3 (23.0, 25.6) 31.4 (27.0, 35.8) –
 Age group 65–74, % 13.2 (12.2, 14.3) 23.3 (19.3, 27.2) –
Daily smokers, women % 16.5 (15.3, 17.6) 19.7 (15.9, 23.4) –
 Age group 25–34, % 21.0 (19.8, 22.2) 16.3 (12.8, 19.8) –
 Age group 35–44, % 15.7 (14.6, 16.9) 24.0 (19.9, 28.0) –
 Age group 45–54, % 17.5 (16.3, 18.7) 19.6 (15.9, 23.4) –
 Age group 55–64, % 17.5 (16.3, 18.7) 28.1 (23.9, 32.3) –
 Age group 65–74, % 9.2 (8.3, 10.1) 4.7 (2.7, 6.7) –
Heavy alcohol users, men % 6.8 (6.1, 7.6) 6.8 (4.4, 9.2) –
 Age group 25–34, % 5.9 (5.2, 6.7) 15.9 (12.5, 19.4) –
 Age group 35–44, % 5.3 (4.6, 6.0) 9.1 (6.4, 11.8) –
 Age group 45–54, % 9.6 (8.7, 10.5) 5.4 (3.2, 7.5) –
 Age group 55–64, % 7.2 (6.4, 8.0) 0.9 (0.0, 1.8) –
 Age group 65–74, % 5.3 (4.6, 6.0) 1.6 (0.4, 2.8) –
Heavy alcohol users, women % 3.0 (2.5, 3.5) 5.0 (3.0, 7.1) –
 Age group 25–34, % 4.3 (3.6, 4.9) 6.8 (4.4, 9.1) –
 Age group 35–44, % 3.0 (2.5, 3.5) 6.4 (4.1, 8.7) –
 Age group 45–54, % 3.8 (3.2, 4.4) 5.1 (3.0, 7.2) –
 Age group 55–64, % 2.5 (2.0, 3.0) 4.5 (2.6, 6.5) –
 Age group 65–74, % 1.0 (0.7, 1.3) 1.5 (0.3, 2.6) –
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and 4.1 (2.57, 6.56) for women. Further, it can be 
seen from Table I that heavy alcohol consumption is 
much more common among young re-contacts than 

among participants, and non-participation is much 
more common among young people than among 
others. These facts together explain why mI-mnAR 

Table II. Estimated parameters, with their 95% confidence intervals, from the zero-inflated negative binomial regression model for the 
number of hospital visits. The model was fitted using three periods of hospitalisation history data: full history, five-year history and one-year 
history. The reference levels for the categorical variables sex and region are men and north Karelia.

Estimate (95% confidence interval)

Full history Five years One-year

Count model
Intercept 0.84 (0.71, 0.98) –0.88 (–1.19, –0.57) –1.79 (–2.49, –1.10)
Age: men (10 years) 0.18 (0.16, 0.20) 0.26 (0.21, 0.31) 0.27 (0.16, 0.39)
Age: women (10 years) 0.33 (0.30, 0.35) 0.22 (0.17, 0.28) 0.08 (–0.02, 0.18)
Sex (female) –0.51 (–0.67, –0.34) 0.32 (–0.05, 0.69) 1.22 (0.35, 2.10)
Region: northern Savonia 0.00 (–0.09, 0.09) –0.03 (–0.20, 0.13) 0.04 (–0.23, 0.31)
Region: Turku and loimaa –0.16 (–0.25, –0.07) –0.26 (–0.43, –0.09) –0.26 (–0.55, 0.02)
Region: Helsinki and vantaa –0.30 (–0.37, –0.22) –0.45 (–0.60, –0.31) –0.46 (–0.70, –0.23)
Region: Oulu 0.03 (–0.05, 0.11) –0.09 (–0.24, 0.06) –0.16 (–0.41, 0.09)
Participant (yes) –0.25 (–0.30, –0.21) –0.60 (–0.71, –0.48) –0.92 (–1.14, –0.70)
Re-contact respondent (yes) –0.10 (–0.19, –0.01) 0.02 (–0.20, 0.24) 0.08 (–0.33, 0.50)
Zero model  
Intercept 22.19 (6.74, 37.63) 1.40 (0.53, 2.26) 1.73 (0.66, 2.80)
Age: men (10 years) –9.23 (–15.32, –3.15) –0.56 (–0.78, –0.34) –0.31 (–0.55, –0.07)
Age: women (10 years) –1.46 (–1.80, –1.11) –0.44 (–0.65, –0.22) –0.42 (–0.58, –0.26)
Sex (female) –19.44 (–34.93, –3.96) –0.46 (–1.78, 0.85) 0.99 (–0.35, 2.33)
Participant (yes) –0.56 (–1.11, 0.01) –1.59 (–2.66, –0.52) –0.88 (–1.37, –0.40)
Re-contact respondent (yes) –0.59 (–1.96, 0.78) 0.05 (–0.58, 0.68) 0.12 (–0.43, 0.67)

Table III. Hospitalisations per 1000 individuals by length of hospitalisation history, using: full history available, five-year history and one-
year history. First four rows describe the actual data, and the next three show the results of multiple imputations. The results of multiple 
imputations are to be compared with the numbers from the full cohort.

Estimate (95% confidence interval)

Full history Five years One year

Men:
Full cohort 4305 (4126, 4484) 773 (718, 829) 182 (163, 201)
Participants only 3755 (3561, 3948) 647 (589, 705) 147 (127, 168)
Re-contact respondents 4072 (3394, 4751) 941 (671, 1212) 227 (136, 318)
non-participants 5070 (4720, 5420) 919 (811, 1027) 223 (187, 259)
mI-mnAR 4050 (3725, 4374) 834 (689, 978) 188 (158, 217)
mI-mAR 3784 (3526, 4042) 667 (602, 731) 151 (130, 171)
mI-mAR-nR 3816 (3624, 4008) 675 (619, 732) 152 (133, 171)
Women:  
Full cohort 5445 (5237, 5653) 852 (783, 921) 180 (160, 200)
Participants only 5598 (5377, 5818) 799 (733, 865) 156 (138, 175)
Re-contact respondents 6514 (5581, 7446) 1073 (767, 1379) 269 (175, 363)
non-participants 5179 (4733, 5625) 918 (760, 1076) 207 (161, 252)
mI-mnAR 5538 (5076, 5999) 929 (751, 1108) 222 (169, 275)
mI-mAR 5168 (4967, 5369) 767 (692, 842) 150 (132, 168)
mI-mAR-nR 5146 (4949, 5343) 760 (698, 821) 153 (133, 173)
Both:  
Full cohort 4880 (4742, 5018) 813 (769, 857) 181 (167, 195)
Participants only 4676 (4527, 4825) 723 (679, 767) 152 (138, 166)
Re-contact respondents 5293 (4696, 5890) 1007 (800, 1214) 248 (182, 313)
non-participants 5124 (4845, 5403) 919 (826, 1012) 215 (186, 243)
mI-mnAR 4800 (4524, 5076) 882 (763, 1001) 205 (179, 231)
mI-mAR 4482 (4320, 4644) 717 (667, 767) 150 (137, 163)
mI-mAR-nR 4487 (4348, 4626) 718 (677, 759) 152 (139, 166)

mI: multiple imputation; mnAR: missing not at random; mAR: missing at random; nR: no re-contact.
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leads to the high prevalence of heavy alcohol con-
sumption in men.

Discussion

We studied the estimation of population-level health 
indicators from data that suffer from relatively high 
non-participation. The estimation utilised re-con-
tact data; that is, data from the non-participants 
who answered to a survey questionnaire when con-
tacted again, to adjust for non-participation. With 
data from FInRISK 2012, we estimated the preva-
lence of daily smoking and heavy alcohol consump-
tion using the mI-mnAR approach. These estimates 
were compared with the estimates obtained using 
less elaborated mI-mAR and mI-mAR-nR 
approaches and with the straightforward inclusion 
of participants only.

These approaches relied on different assumptions. 
The mI-mnAR approach assumed that re-contact 
respondents represent all non-participants when 
adjusted for the background variables, while the 
mI-mAR approaches used a stronger assumption 
that participants represent the whole population 
when adjusted for the background variables. The 
inclusion of the participants only (complete-case 

analysis) used the strongest assumption that the par-
ticipants represent the whole population.

The bias in the estimates depends on the valid-
ity of the assumptions. many HES report that par-
ticipants and non-participants differ on their health 
indicators, which violates the assumption of com-
plete-case analysis. This is also the case for the 
FInRISK 2012 data, as the prevalence of daily 
smoking and heavy alcohol consumption for par-
ticipants and re-contact respondents differ. We 
evaluated the other two assumptions using regis-
ter-based history data about the hospitalisations of 
all people invited to the study. We checked if there 
were differences in numbers of hospitalisations 
between participants, re-contact respondents and 
the remaining non-participants when other varia-
bles were used as covariates.

We found out that if an individual had ever been 
hospitalised, the expected number of hospitalisations 
for re-contact respondents and non-participants 
were the same. In addition, we predicted the number 
of hospitalisations using three multiple imputation 
approaches. We observed that the predictions from 
the mI-mnAR approach matched best with the true 
number of hospitalisations. These findings support 
the assumption which is utilised by the mI-mnAR 
approach.

The evaluation of assumptions (2) and (3) was 
based on the idea that the number of hospitalisations 
is associated with the health status. If the number of 
hospitalisations differs between re-contact respond-
ents and non-participants, then there is likely to be a 
difference in distributions of health indicators 
between the groups. Otherwise, the distributions are 
assumed to be the same. As we used the hospitalisa-
tions before the study, the symptoms are not caused 
by the health condition during the survey date but 
are associated with them.

This makes us think that the hospitalisations 
before the study are a less convincing source of evi-
dence than prospective follow-up data that have 
been used earlier to evaluate the assumptions for 
FInRISK 2007 [11]. If the follow-up data are 
available, then we recommend using them [11]. 
Otherwise, we recommend using the proposed 
method instead of not checking the assumptions at 
all. Unlike prospective follow-up data, the hospi-
talisation history data are readily available shortly 
after the study. In principle, hospitalisation history 
data could be used directly in the imputation model 
such that instead of just evaluating the assumptions 
(1)–(3) the imputations would be predicted based 
on the hospitalisation history data. How to opti-
mally do this and the benefit of doing it are ques-
tions to be further investigated.

Table Iv. Comparison of prevalence estimates of daily smoking 
and heavy alcohol consumption. The proposed method mI-mnAR 
is compared to alternative methods mI-mAR, mI-mAR-nR and 
estimates for the participants and re-contact respondents.

Estimate (95% confidence interval)

Daily smokers (%) Heavy alcohol 
users (%)

Men:
Participants 23.2 (21.6, 24.8) 6.8 (5.9, 7.8)
Re-contact 
respondents

28.5 (22.9, 34.0) 6.8 (3.7, 9.9)

mI-mnAR 28.5 (25.9, 31.2) 9.4 (7.2, 11.6)
mI-mAR 24.8 (23.1, 26.5) 7.1 (5.7, 8.4)
mI-mAR-nR 23.7 (22.2, 25.1) 6.7 (5.7, 7.7)
Women:  
Participants 16.5 (15.2, 17.8) 3.0 (2.4, 3.6)
Re-contact 
respondents

19.7 (15.4, 24.0) 5.0 (2.6, 7.4)

mI-mnAR 19.0 (15.8, 22.2) 4.8 (3.4, 6.3)
mI-mAR 17.1 (15.6, 18.5) 3.2 (2.4, 3.9)
mI-mAR-nR 16.5 (15.0, 18.0) 3.1 (2.3, 3.9)
Both:  
Participants 19.6 (18.6, 20.6) 4.8 (4.2, 5.3)
Re-contact 
respondents

23.7 (20.3, 27.2) 5.9 (3.9, 7.8)

mI-mnAR 23.7 (21.5, 25.9) 7.1 (5.6, 8.6)
mI-mAR 20.9 (19.7, 22.0) 5.1 (4.4, 5.8)
mI-mAR-nR 20.1 (19.0, 21.1) 4.9 (4.3, 5.5)

mI: multiple imputation; mnAR: missing not at random; mAR: 
missing at random; nR: no re-contact.
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The setup for FInRISK 2012 was similar to 
FInRISK 2007, which allows a comparison between 
the studies. Using the data from the participants 
only, the point estimates for smoking prevalence 
were 21.8% in 2007 [11] and 19.6% in 2012. 
Similarly, the prevalences of heavy alcohol consump-
tion were estimated as 5.2% in 2007 and 4.8% in 
2012. Thus, based on the participants only, there 
seems to be a positive development.

The results change if the mI-mnAR approach is 
used. Then, the estimated prevalence of daily smok-
ing appears as 27.1% in 2007 [11] and 23.7% in 
2012. Estimated prevalences of heavy alcohol con-
sumption are 6.8% in 2007 and 7.1% in 2012. Thus, 
there seem to be notable differences in the prevalence 
estimates between the approaches. The mI-mnAR 
approach produces the widest confidence intervals in 
comparison to the mI-mAR, mI-mAR-nR and par-
ticipants approach, all of which are based on unreal-
istic assumptions.

As noted by many authors [4,8,11,21–23], miss-
ing data caused by non-participation is a serious 
problem in HES. Our results support the idea that 
re-contact data can improve the reliability of the 
health indicators of non-participants and provide 
information about the selectivity.

Although the assumption for mI-mnAR holds for 
FInRISK 2012 data, it may not hold for other HES. 
For example, the lEIDEn 85-plus study [24] 
observed that the mortality risk of re-contact respond-
ents was similar to that of elderly participants. In such 
a situation, re-contact data were not useful for bias 
reduction. As the populations of FInRISK and 
lEIDEn 85-plus differ a lot, the results are not 
directly comparable.

According to our knowledge, re-contact data have 
only occasionally been collected in HES. Our results 
suggest that re-contact data can provide information 
about the health indicators of non-participants and 
selectivity of non-participation. Therefore, we rec-
ommend that HES would collect re-contact ques-
tionnaire data and that the same self-reported 
questions would be asked for re-contacts and initial 
participants to allow comparison.

Obtaining representative estimates about sensi-
tive health indicators associated with selective non- 
participation is important for data-driven decision-
making in national health policy. Our work shows 
that re-contact data have the potential to help 
reduce the selection bias. When used together with 
hospitalisation register data, the assumptions for 
which the estimation of population-level health 
indicators is based on can be evaluated soon after 
the survey.
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Data missing not at random (MNAR) are a major challenge in survey sampling. We propose an approach based
on registry data to deal with non-ignorable missingness in health examination surveys. The approach relies on
follow-up data available from administrative registers several years after the survey. For illustration, we use data on
smoking prevalence in Finnish National FINRISK study conducted in 1972–97. The data consist of measured survey
information including missingness indicators, register-based background information and register-based time-to-
disease survival data. The parameters of missingness mechanism are estimable with these data although the original
survey data are MNAR. The underlying data generation process is modelled by a Bayesian model. The results
indicate that the estimated smoking prevalence rates in Finland may be significantly affected by missing data.
Copyright © 2015 John Wiley & Sons, Ltd.
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1 Introduction
Participation rates in health examination surveys (HES) have been declining over the years in many countries. The
declining participation rates inflict the estimation of health indicators in many ways. First, the low participation rates
compromise the population representativeness of the sample because the participants and non-participants differ from
each other. The non-participants are more often smokers (Shahar et al., 1996; Tolonen et al., 2005) and have higher
risk of death (Jousilahti et al., 2005; Harald et al., 2007) compared with the participants. It has also been found that
the non-participants tend to be men (van Loon et al., 2003; Sogaard et al., 2004), younger persons (Sogaard et al.,
2004) and single (Shahar et al., 1996; Sogaard et al., 2004; Tolonen et al., 2005). Generally, the non-participants
have been found to have lower socio-economic status (Jackson et al., 1996; van Loon et al., 2003; Drivsholm et al.,
2006; Harald et al., 2007) and lower education (Shahar et al., 1996; Sogaard et al., 2004; Tolonen et al., 2005)
than the participants. Second, the declining trends in participation rates may distort the trends of the estimated health
indicators. Especially, if smokers, heavy alcohol users and obese are less eager to participate than they were decades
ago, the trends of the health indicators may look more positive than they should.

In statistical terms, data from HES are missing not at random (MNAR), and consequently, the missingness mecha-
nism cannot be ignored in the analysis (Little & Rubin, 2002). Although dealing with non-ignorable missingness is
challenging in general, there are some methods for this. One of these is making functional assumptions for the joint
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distribution of missing data and observed values (Little, 1993; Ekholm & Skinner, 1998). This is usually accompanied
with a sensitivity analysis for evaluating the effect of assumed missingness mechanism (van Buuren et al., 1999). If
study design is longitudinal, the modelling of non-ignorable missingness may be based on partially available repeated
measurements (Ibrahim & Molenberghs, 2009). Recently, a subsample ignorable likelihood approach (Little & Zhang,
2011) was proposed for situations, where full data are available for some variables, while the other variables have
missing data.

We propose an approach to correct for non-ignorable missingness in situations where follow-up data are available for
both participants and non-participants. Finland is one of the few countries where follow-up data for the entire survey
sample can be obtained through a record linkage to the administrative registers. Naturally, the follow-up data will
not be available right after the survey but only many years later. Without further assumptions, the trends of health
indicators can be therefore corrected only retrospectively.

As an illustration for our approach, we use the data from the National FINRISK studies (Laatikainen et al., 2003;
Harald et al., 2007), which are one of the data sources used to evaluate public health in Finland. The data from the
surveys carried out in 1972, 1977, 1982, 1987, 1992 and 1997 are included. The participation to the physical
measurements have decreased from 95% in 1972 to 74% in 1997. Note that in the next section, we define partic-
ipation differently. Under the decreasing participation, we estimate the prevalence of smoking utilizing the follow-up
data available from the registers.

The relevant details of the FINRISK surveys are presented in Section 2. In Section 3, a Bayesian model is built for the
analysis of non-ignorable missing data. Section 4 compares the trends for non-ignorable and ignorable approaches,
and Section 5 concludes the paper.

2 FINRISK data and linked register data
The National FINRISK Study (earlier North Karelia Project) data arose from a setup where the original aim was to
intervene to people of North Karelia via a health education campaign. Later, the data have been collected every five
years to measure the risk factors of key diseases and to monitor public health. In addition to North Karelia, the
neighbour province of Northern Savonia has been included in studies since the beginning. Later, Turku and Loimaa
area, Helsinki and Vantaa area and Oulu province have joined the survey. The data from the surveys conducted in
1972–97 are used in this paper.

Sampling frame for the surveys has been the National Population Register. The survey design has changed over the
study years (Table I), but at each study, the sampling has been stratified among the participating areas. In 1972,
the sampling was systematic on birthdays, and people aged between 25 and 59 years were sampled. In 1977, the
simple random samples was drawn from people aged between 30 and 64 years. In 1982, the survey was balanced
between the 10-year age groups, and 25- to 64-year-old people were sampled. In years 1987, 1992 and 1997, the
sampling design was balanced sampling between 10-year age groups within genders. In 1997, the eligible age was
extended to 25–74 years in North Karelia and in Helsinki and Vantaa area.

The participation is defined as answering to the question about daily smoking. This definition leads to lower par-
ticipation rates than reported elsewhere because some individuals participated otherwise but skipped the smoking
questions. The participation seem to depend on age and gender but possibly also on smoking, which is to be inves-
tigated. The age dependency of the participation rate and its change over the period 1972–97 is shown in Figure 1.
Smoking, together with other health indicators, was measured by using a multi-page questionnaire. Smoking ques-
tions classified each person either non-smokers, ex-smoker or current smoker. We model smoking using two classes,
where the ex-smokers and non-smokers are considered as the same.
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Figure 1. Participation rate as a function of age in 1972 and 1997. Each circle and triangle represents the observed
proportion of participants within one-year age group over all study areas studied that year. The graph shows that the
participation rates have decreased in all age groups for both men and women. The solid lines are calculated using locally
weighted regression (Cleveland, 1979).

Figure 2. Cumulative hazard estimates with confidence intervals (CI) for smoking-based diseases of lung cancer and chronic
obstructive pulmonary disease. Graphs are produced using the participant data only.

The sources of the follow-up data are Care Register for Health Care (HILMO) (National Institute for Health and
Welfare, 2014) and the cause of death data (Statistics Finland, 2014). The follow-up data are linked to the survey
data by personal identification number. The follow-up data contain the date and the cause of death and the cause of
hospitalization. The diseases considered here are lung cancer (International Classification of Diseases (ICD) 10: C34,
ICD9/ICD8: 162) and chronic obstructive pulmonary disease (COPD) (ICD10: J41-J44, ICD9/ICD8: 491-492) for
which smoking is known to be the main risk factor (Doll & Hill, 1956; Wynder & Hoffmann, 1994; Mannino & Buist,
2007; Cornfield et al., 2009). The follow-up data are available for all persons (participants and non-participants)
selected to the FINRISK samples. The effect of smoking to the onset of lung cancer and COPD for men and women is
illustrated in Figure 2.
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We denote our variables as follows. The smoking indicator variable is denoted as Yi for person i. Background variables
Xi D .x1i, x2i, x3i, x4i/ for person i include the age at the beginning of the follow-up x1i, area x2i and gender x3i, which
origin from the registers. The variable x4i is the study year.

The sample indicator m1i D 1 indicates that person i has been chosen to a survey sample, and participation indicator
M2i D 1 indicates that he or she has participated to the survey. If m1i D 0, then M2i must also be 0 because people
outside of the survey sample cannot take part. Variables Xi are observed for both the participants and non-participants,
while Yi is observed only from the participants.

The follow-up data consist of time-to-event-variable Ti and event indicator ri, where Ti is the age at the diagnosis of
the disease, i.e. the onset of lung cancer or COPD. Variable Ti is observed for the participants and non-participants.
If a person has not been diagnosed until the end of follow-up period (31 December 2011), or if person dies for other
causes, then the time-to-event-variable becomes right censored. In the case of right censoring, we know only that
Ti > ci where ci is person’s age at censoring or age at death. The date of diagnosis can be the same as date of death,
if person has not been diagnosed earlier, and lung cancer or COPD is the cause of death. If person recovers from lung
disease and becomes repeatedly diagnosed, the time-to-event-variable holds the time of the earliest diagnosis.

3 Bayesian model for non-participation and smoking
3.1. Dependency structure and modelling assumptions
We present the structure of the model in Figure 3 using the concept of causal model with design (Karvanen, 2014).
Figure 3 represents a causal model at the bottom where background variables Xi D .x1i, x2i, x3i, x4i/ affect the prob-
ability of smoking P.Yi/ and the risk of lung disease P.Ti/. In addition, smoking also has an effect on the risk of lung
disease. These relations are described as arrows Xi ! Ti, Xi ! Yi and Yi ! Ti in the model graph. The causal relations
of smoking and lung cancer (Doll & Hill, 1956; Wynder & Hoffmann, 1994; Cornfield et al., 2009) and smoking and
COPD (Mannino & Buist, 2007) are known to exist. Also, it has been observed that the prevalence of smoking varies
depending on the area, gender and age (Peltonen et al., 2008; Borodulin et al., 2013). Persons belonging to the
sample have m1i D 1 and are selected from population �, which in this case is the general Finnish population in geo-
graphically defined areas and age groups specified earlier. Sampling is based on the background register data, which
is why we have Xi ! m1i in Figure 3. Participation, which is indicated by M2i D 1, is affected by background variables
(Xi ! M2i) and smoking (Yi ! M2i). People may participate only if they are selected to the sample, which is indicated
by the arrow m1i ! M2i in the graph. If a person participates, he or she has M2i D 1 and thus Y�i D Yi. Otherwise,
smoking indicator is missing Y�i D NA. The background information as well as survival information T�i are collected
for all persons in the sample. The follow-up variable Ti is a vector of two elements, the actual time variable ti, either
for the event-time or censoring time, and an indicator variable for censoring, denoted as ri. The notation for this is

Ti D .ti, ri/ D

´
.ti, 0/, if an event is observed

.ti, 1/, if an event is right censored.

The observed T�i is then defined as

T�i D

´
Ti if person i belongs to a sample: m1i D 1

NA, if person i does not belong to a sample: m1i D 0.

The censoring due to deaths other than lung cancer or COPD is informative because smoking is a risk factor for many
common causes of death. The usual way to deal with this kind of informative censoring is to define an additional
endpoint for other deaths and use a competing risk model (Kalbfleisch & Prentice, 2002). However, this would create
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Figure 3. Illustration of variable dependencies and the data-collection process.

new problems because we would implicitly assume that all differences in the mortality between participants and non-
participants are due to smoking. In reality, participants and non-participants differ also by many other risk factors,
which work as confounders. Therefore, we have chosen to use only smoking-specific survival outcome in the analysis
and to treat the censoring as non-informative. The implications to the results and alternative approaches are discussed
in Section 5.

In Figure 3, the non-participation depends on smoking status Yi, which means that the missingness mechanism is
non-ignorable. In general, the non-ignorable missingness mechanism is not estimable from data. To overcome this
issue, we use the follow-up data to make an additional assumption on the missingness mechanism.

We want to estimate the smoking prevalence for the whole sample, so we need to estimate the distributions

P.Yi/ D P.M2i D 1/P.YijM2i D 1/C P.M2i D 0/P.YijM2i D 0/ i 2 �. (1)

On the right-hand side of Equation (1), the probability of smoking for non-participants P.YijM2i D 0/ cannot be

estimated using the observed data without making further assumptions. This may be written as

P.YijM2i D 0/ D

Z Z
P.YijTi, Xi, M2i D 0/P.Ti, XijM2i D 0/dXidTi, i 2 �

where P.YijTi, Xi, M2i D 0/ is not estimable but P.Ti, XijM2i D 0/ is estimable from observed data. We now assume that

P.YijTi, Xi, M2i D 0/ D P.YijTi, Xi, M2i D 1/, i 2 � (2)

which means that, given the observations Ti and Xi, additional observation M2i D 1 or M2i D 0 does not give

us any further understanding about the distribution of Yi. Thus, for the rest of our paper, we restrict the models
of interest to the cases for which Equation (2) holds. Now, the smoking prevalence (1) can be estimated if the
probabilities P.M2i D 1/, P.YijM2i D 1/, P.M2i D 0/, P.Ti, XijM2i D 0/ and P.YijTi, Xi, M2i D 1/ can be estimated. The
assumption (2) can be justified if the relation Yi ! Ti is strong; i.e. the early onset of lung cancer or COPD is a strong
indicator of smoking. In practice, the model parameters for relations of Xi, Yi and Ti are estimated using data from the
participants only.

Copyright © 2015 John Wiley & Sons, Ltd 6 Stat 2015



Stat Non-ignorable missingness in smoking trends

The ISI’s Journal for the Rapid (wileyonlinelibrary.com) DOI: 10.1002/sta4.73
Dissemination of Statistics Research

3.2. Construction of posterior distribution
The model consists of two sub-models: a survival model for T�i and a logistic regression model for the smoking
indicator Y�i . Next, the parametric forms for sub-models are considered.

Time-to-disease variable T�i jm1i D 1 is assumed to follow Weibull distribution with a common shape parameter a and
scale parameter bi varying person by person. The distribution is left-truncated by the person’s age t0i D x1i at the
beginning of follow-up. The likelihood contribution for observed disease cases can be written as

p.T D t1ija, b, ri D 1, T > t0i/ D
abt1i

a�1exp
�
�bt1i

a�
.1 � F.t0i//

for t1i > t0i,

where F.t/ is cumulative distribution function for Weibull distribution. For censored cases i : ri D 0, the likelihood
contribution is the survival function

S.T > t1ija, b, ri D 0, T > t0i/ D exp
�
�b

�
t1i

a � t0i
a�� for t1i > t0i.

Parameter bi varies person by person based on the covariate measurements

log.bi/ D �0 C �1x3i C �2Yi C �3x3iYi

C �43A3i C �44A4i C �45A5i C �46A6i

C �53x3iA3i C �54x3iA4i C �55x3iA5i C �56x3iA6i

C �62D2i C �63D3i C �64D4i C �65D5i C �66D6i

C �72x3iD2i C �73x3iD3i C �74x3iD4i C �75x3iD5i C �76x3iD6i,

(3)

where parameter �0 corresponds to lung disease risk of non-smoking men at baseline (year 1972, North Karelia),
�1 indicates the difference of risks for non-smoking men and women, �2 indicates the effect of smoking for men at
baseline and �3 describes how disease risk for smoking women is different from the risk of smoking men (at baseline).
The �42, : : : , �46 stand for how the other areas differ from the baseline area (North Karelia) for men. The coefficients
�53, : : : , �56 describe how the last-mentioned quantities differ between the women and men. The �62, : : : , �66 are the
differences of the study year to the baseline study (year 1972) for men, and �72, : : : , �76 are the differences of women
and men for that particular study year. In Equation (3), the variables A2i, : : : , A6i are indicators for the study area such
that A2i D 1 for the North Karelia (area 2), A3i D 1 for the Northern Savonia (area 3), A4i D 1 for Turku and Loimaa
(area 4), A5i D 1 for Helsinki and Vantaa (area 5) and A6i D 1 for Oulu province (area 6). Similarly, D1i, : : : , D6i are
indicators about the study year such that D1i D 1 for 1972, D2i D 1 for 1977, D3i D 1 for 1982, D4i D 1 for 1987,
D5i D 1 for 1992 and D6i D 1 for 1997.

The smoking indicator is modelled also using logistic regression. The effects of gender x3i, year of birth xbirth,i D x4i�x1i

and study year x4i are included in the model. We assume that the smoking indicator is Bernoulli distributed

Yi � Bernoulli.si/

with probability si such that

logit.si/ D ˛0,a,u,g C ˛1,a,u,g.xbirth,i � 1930/, (4)

where a D x2i is area, g D x3i is gender and u D x4i is study year for person i. The coefficient ˛0,a,u,g represents the
intercept term for persons living in area a, of gender g, who were born in 1930 and were selected to the sample in
year u. The year 1930 was chosen as a reference level because all the studies have some participants who were born
in 1930. The coefficients ˛1,a,u,g represents the impact of year of birth to the probability of smoking.

Stat 2015 7 Copyright © 2015 John Wiley & Sons, Ltd
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The information on the area (North Karelia or Northern Savonia) is missing for non-participants (2,664 in total) in
1972 and 1977. This missingness is due to accidentally lost data. These values are imported using multiple imputa-
tion with fixed probabilities P.area was Northern Savonia j 1972/ D 0.495 and P.area was Northern Savonia j 1977/ D
0.493. The imputation is not necessary for model fitting purposes but is needed for the comparison of the areawise
smoking trends.

3.3. Model fitting and model diagnostics
The model was built and fitted using Just Another Gibbs Sampler (Plummer, 2003), which is a tool for Bayesian
analysis (Gelman et al., 2013) of graphical models using Markov chain Monte Carlo (MCMC) (Robert & Casella, 2004).
For all parameters, the prior distributions were set as normal distributions with zero mean and variance �2 D 1, 000.
Regarding the scale of the parameters, these priors are non-informative. Eight chains were run in parallel. Each of the
chains had 200,000 iterations from which the first 40,000 were discarded as a burn-in. From the remaining 160,000
iterations, the values of each 250th iteration were stored to produce eight final thinned chains of 640 iterations. In
total, we have 640 � 8 D 5, 120 realizations from posterior to use.

The MCMC convergence was monitored by Brooks–Gelman–Rubin convergence diagnostic (Brooks & Gelman, 1998).
The diagnostics of all parameters were below 1.01 when values below 1.05 indicate convergence. One of the MCMC
chains of the final model is visualized for two parameters in Figure 4. The Figure shows that the Weibull shape
parameter is less well mixed than the other parameter. This is due to large autocorrelation caused by dependency on
Weibull scale parameter. The better mixing on the smoking coefficient �2 is also visualized in the Figure. The majority
of the parameters have good mixing. Posterior summaries of regression coefficients are given in Tables A.1 and A.2;
see Appendix A.

The model diagnostics included a graphical comparison of the posterior predictive distribution against the observed
values. The model was concluded to have a good fit to the data.

Figure 4. Chain plots of Markov chain Monte Carlo computation. Left: Weibull shape parameter a. Right: regression
coefficient of smoking variable �2 of survival model.

Copyright © 2015 John Wiley & Sons, Ltd 8 Stat 2015
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4 Comparison of corrected and uncorrected smoking trends
To obtain knowledge about the smoking prevalence for the study populations, we apply data augmentation (Tanner
& Wong, 1987) to impute the missing values of smoking for non-participants and take into account censoring of Ti.
Because we apply Bayesian inference, the imputations are drawn from the posterior predictive distribution. First, the
posterior samples of the regression coefficients are obtained using MCMC and participants data. Imputations of the
smoking indicator for non-participants are drawn using the following procedure, which we implemented in R (R Core
Team, 2014). The imputation depends on whether the event is observed or censored. If Ti is censored, then first
event-time QTi for Ti is generated using

QTi � P. QTijXi/ D P. QTijXi, Y
0

i D 1/P.Y
0

i D 1jXi/C P. QTijXi, Y
0

i D 0/P.Y
0

i D 0jXi/.

After that, use the imputed event-time QTi to simulate QYi � P. QYij QTi, Xi/. If Ti is observed, then simulate QYi � P. QYijTi, Xi/

straightforwardly based on the observed event-time.

After the imputation, the survey sampling design has to be taken into account. We may treat data with each imputation
as a full dataset. To provide area-specific population-level estimates, we may then utilize inverse sampling probabil-
ity weights (Lehtonen & Pahkinen, 2004). In addition to utilizing the sampling weights, the estimates were adjusted
using WHO Scandinavian standardization weights (Ahmad et al., 2001) in order to make the smoking rates interna-
tionally comparable. As an outcome, we obtain area-specific trend estimates for both genders corresponding to each
imputation. These trends can be considered as samples from the posterior distribution of the trends. The estimated
model-based corrected trends are compared with the corresponding original trends in Figure 5 for North Karelia. The
original or uncorrected trends were produced from the participant data only. The adjustment for sampling design and
the WHO weights was the same as for the model-based trends.

Figure 5. Model-based trend and original trend for men (left) and women (right) in North Karelia province. North Karelia was
chosen because of the most visible change in the trends among the areas. Two dotted lines represent 95% credible interval
(CI) of the posterior distribution for corrected trends. Both the model-based and the original trend use WHO Scandinavian
standardization weights.

Stat 2015 9 Copyright © 2015 John Wiley & Sons, Ltd
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Table II. Observed and model-based smoking proportions for the study in 1997 adjusted using WHO Scandinavian
standardization weights. The two rightmost columns describe the 95% credible intervals of model-based trends.
Participant smoking is the same as "original trend" in Figure 5.

Gender Area Participant smoking (%) Model-based total smoking (%) 95% Credible interval

Men North Karelia 26.8 31.6 29.2 33.9
Men Northern Savonia 30.7 31.8 29.5 34.0
Men Turku and Loimaa 32.4 33.7 31.1 36.2
Men Helsinki and Vantaa 26.1 32.7 30.1 35.6
Men Oulu province 30.1 32.3 29.5 35.2
Women North Karelia 14.2 18.3 16.3 20.7
Women Northern Savonia 17.0 19.1 17.1 21.1
Women Turku and Loimaa 20.5 23.6 21.3 26.0
Women Helsinki and Vantaa 22.6 27.7 25.3 30.4
Women Oulu province 19.1 22.2 20.0 24.3

In Figure 5, the difference between the trends increases as the participation rate decreases. In addition, it seems that
the difference of the trends in most time-points is larger for women than for men. On the other hand, the largest
difference in the corrected and non-corrected prevalence estimates is 6.6 percentage points (relative difference of
25%), which is observed for men in Helsinki and Vantaa in 1997. The comparison of the model-based and original
smoking prevalence trends for the study year 1997 is presented in Table II.

5 Discussion
We have proposed an approach to overcome the challenges with non-ignorable missing data in epidemiological studies
and have applied it to estimate the population trends of smoking in Finland in 1972–97. The approach uses follow-up
data to obtain information on risk factors missing at baseline. Thanks to the administrative registers in Finland, the
follow-up data are available also for non-participants. Smoking has been selected as the risk factor of interest because
it is a strong risk factor of lung cancer and COPD and potentially has an effect to the decision on the HES participation.

We evaluated the proportion of smokers combining the available information from both the participants and non-
participants for the FINRISK study. Our results indicate that the levels of smoking prevalence is affected when the
information provided by lung cancer and COPD time-to-event data is accounted to provide an estimate for the smoking
of non-participants.

In general, statistical modelling under the non-ignorable missingness requires external information on the missingness
mechanism. It can be argued that the inclusion of follow-up data provides the information needed. The situation can
be formally described using causal models with design and then modelled by a Bayesian model. The idea of utilizing
existing causal knowledge to fix non-ignorable missingness is not restricted to survival models.

The approach is limited by the availability of follow-up data. It takes years or decades until the follow-up data on lung
cancer and COPD can be used to model the missing data mechanism. It is unclear to what extent the approach can
be applied in other countries because register-based baseline and follow-up data sets are not usually available for non-
participants. Although the approach may not be directly applicable in a study, the results from other similar studies,
where the approach has been applied, may provide a starting point for the prior setting and the sensitivity analyses.

Censoring was treated as non-informative, which may cause some bias to the estimates. As smoking is a risk factor
for many common causes of death, an individual censored due to other deaths is more likely to be a smoker than an
individual censored due to the end of the follow-up. It is therefore expected that the actual proportions of smokers
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could be even higher than the corrected proportions reported here. Improved estimation would require a competing
risk approach with a comprehensive set of risk factors and a number of disease-specific endpoints. This is left as
future work.

Inclusion of information about smoking as a time-dependent process would yield more realistic expressions of smoking
in different age groups. The effect of smoking years could be then considered as a covariate for the lung diseases.
With the current model, it is assumed that observed lung disease diagnosis, e.g. at age 50 years is equally strong
indication about smoking, no matter if the person is diagnosed five or 25 years after the survey. In reality, individuals
may have started or stopped smoking after the survey was conducted.

The presented approach may be utilized with data arising in forthcoming FINRISK surveys. In addition, the model
could be used to give recommendations on the sample size and the stratification.

Our work reminds that data with MNAR situation may be changed to missing at random using additional assumption
and external information. This allows us to provide estimates that describe the whole population instead of the
restricted sample of survey participants.

Appendix A: Regression coefficients

Table A.1. Posterior summaries of the estimated parameters for the smoking model, reduced to the parameters
of North Karelia.

Description of related variable Parameter Mean SD 2.5% 97.5%

Men born at 1930 in 1972 ˛0,1972,1,2 0.086 0.043 0.003 0.168
Men born at 1930 in 1977 ˛0,1977,1,2 �0.294 0.047 �0.384 �0.203
Men born at 1930 in 1982 ˛0,1982,1,2 �0.672 0.069 �0.806 �0.538
Men born at 1930 in 1987 ˛0,1987,1,2 �0.888 0.084 �1.052 �0.724
Men born at 1930 in 1992 ˛0,1992,1,2 �1.092 0.159 �1.409 �0.779
Men born at 1930 in 1997 ˛0,1997,1,2 �1.449 0.107 �1.661 �1.244
Women born at 1930 in 1972 ˛0,1972,2,2 �2.106 0.070 �2.242 �1.971
Women born at 1930 in 1977 ˛0,1977,2,2 �2.452 0.086 �2.625 �2.287
Women born at 1930 in 1982 ˛0,1982,2,2 �2.361 0.111 �2.583 �2.153
Women born at 1930 in 1987 ˛0,1987,2,2 �2.412 0.128 �2.670 �2.164
Women born at 1930 in 1992 ˛0,1992,2,2 �2.599 0.219 �3.039 �2.183
Women born at 1930 in 1997 ˛0,1997,2,2 �2.833 0.204 �3.239 �2.449
Difference of year of birth to 1930 (men in 1972) ˛1,1972,1,2 0.001 0.004 �0.007 0.009
Difference of year of birth to 1930 (men in 1977) ˛1,1977,1,2 0.008 0.005 �0.0004 0.017
Difference of year of birth to 1930 (men in 1982) ˛1,1982,1,2 0.013 0.005 0.003 0.022
Difference of year of birth to 1930 (men in 1987) ˛1,1987,1,2 0.019 0.005 0.009 0.028
Difference of year of birth to 1930 (men in 1992) ˛1,1992,1,2 0.017 0.007 0.002 0.032
Difference of year of birth to 1930 (men in 1997) ˛1,1997,1,2 0.029 0.005 0.019 0.038
Difference of year of birth to 1930 (women in 1972) ˛1,1972,2,2 0.043 0.007 0.030 0.056
Difference of year of birth to 1930 (women in 1977) ˛1,1977,2,2 0.050 0.008 0.034 0.066
Difference of year of birth to 1930 (women in 1982) ˛1,1982,2,2 0.057 0.007 0.044 0.070
Difference of year of birth to 1930 (women in 1987) ˛1,1987,2,2 0.049 0.006 0.037 0.062
Difference of year of birth to 1930 (women in 1992) ˛1,1992,2,2 0.049 0.009 0.031 0.066
Difference of year of birth to 1930 (women in 1997) ˛1,1997,2,2 0.049 0.007 0.035 0.064
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Table A.2. Posterior summaries of the estimated parameters for the survival model (includes all parameters).

Description of related variable Parameter Mean SD 2.5% 97.5%

Weibull shape parameter a 4.257 0.111 4.041 4.475
Intercept (men) �0 �21.848 0.501 �22.817 �20.859
Gender (women) �1 �1.352 0.164 �1.665 �1.031
Smoking �2 1.772 0.061 1.653 1.893
Interaction of smoking and gender �3 0.559 0.116 0.328 0.786
Northern Savonia �43 0.070 0.054 �0.036 0.175
Turku and Loimaa �44 �0.298 0.085 �0.466 �0.134
Helsinki and Vantaa �45 �0.389 0.131 �0.652 �0.139
Oulu province �46 �1.290 0.300 �1.931 �0.743
Interaction of Northern Savonia and women �53 �0.274 0.131 �0.528 �0.023
Interaction of Turku and Loimaa and women �54 0.654 0.161 0.337 0.970
Interaction of Helsinki and Vantaa and women �55 0.509 0.241 0.037 0.963
Interaction of Oulu province and women �56 1.072 0.477 0.104 2.006
Year 1977 �62 �0.242 0.074 �0.382 �0.094
Year 1982 �63 0.017 0.074 �0.125 0.164
Year 1987 �64 �0.090 0.105 �0.295 0.117
Year 1992 �65 �0.185 0.126 �0.433 0.062
Year 1997 �66 0.134 0.107 �0.075 0.345
Interaction of women and year 1977 �72 0.269 0.162 �0.042 0.582
Interaction of women and year 1982 �73 �0.240 0.174 �0.581 0.092
Interaction of women and year 1987 �74 0.182 0.212 �0.234 0.600
Interaction of women and year 1992 �75 0.506 0.225 0.058 0.950
Interaction of women and year 1997 �76 0.343 0.212 �0.078 0.753
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There is a mistake in the real data example in the article Kopra, J, Härkänen, T, Tolonen, H, & Karvanen, J (2015)
“Correcting for non-ignorable missingness in smoking trends”, Stat, 4(1), 1–14. In Figure 5, the trends labelled
as “Original trend” are incorrect due to misspecified weighting. The mistake appears also in the third column of
Table 2 in the original article. The corrected figure and table are presented below. The correction changes some of
our conclusions. The differences in the trends for men are small. Especially, the large difference observed for men in
Helsinki and Vantaa in 1997 seems to disappear. For women, the differences between the trends are slightly smaller
than in the original article but still notable.

Table 2. Observed and model-based smoking proportions for the study in 1997 adjusted using the World Health
Organization Scandinavian standardization weights. The two rightmost columns describe the 95% credible
intervals of model-based trends. Participant smoking is the same as “Original trend” in Figure 5.

Gender Area Participant smoking (%) Model-based total smoking (%) 95% credible interval

Men North Karelia 32.4 31.6 29.2 33.9
Men Northern Savonia 31.5 31.8 29.5 34.0
Men Turku and Loimaa 33.4 33.7 31.1 36.2
Men Helsinki and Vantaa 32.0 32.7 30.1 35.6
Men Oulu province 30.7 32.3 29.5 35.2
Women Northern Karelia 16.9 18.3 16.3 20.7
Women North Savonia 17.2 19.1 17.1 21.1
Women Turku and Loimaa 21.1 23.6 21.3 26.0
Women Helsinki and Vantaa 26.3 27.7 25.3 30.4
Women Oulu province 19.7 22.2 20.0 24.2
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Figure 5. Model-based trend and original trend for men (left) and women (right) in North Karelia province. Two dotted lines
represent 95% credible interval of the posterior distribution for corrected trends. Both the model-based and the original
trend use the World Health Organization Scandinavian standardization weights.
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Abstract: In epidemiological surveys, data missing not at random (MNAR) due to survey nonresponse
may potentially lead to a bias in the risk factor estimates. We propose an approach based on Bayesian
data augmentation and survival modelling to reduce the nonresponse bias. The approach requires
additional information based on follow-up data. We present a case study of smoking prevalence using
FINRISK data collected between 1972 and 2007 with a follow-up to the end of 2012 and compare it to
other commonly applied missing at random (MAR) imputation approaches. A simulation experiment
is carried out to study the validity of the approaches. Our approach appears to reduce the nonresponse
bias substantially, whereas MAR imputation was not successful in bias reduction.

Key words: Bayesian estimation, data augmentation, follow-up data, health examination surveys,
multiple imputation, survival analysis
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1 Introduction

Population level estimates of risk factors are of major interest in epidemiology.
Data on risk factors such as blood pressure, cholesterol level, body mass index,
alcohol consumption and daily smoking are often collected in health examination
surveys (HES). In an HES, the data on risk factors are gathered usually via both
questionnaires and physical measurements. The trends of population-level risk factors
are monitored, and they are valuable input for policy decisions.

Missing data by unit nonresponse occurs in an HES as invitees neither participate
to physical measurements nor return a survey questionnaire. The decision about
participation have been found to depend on the risk factors, such as smoking (Shahar
et al., 1996), either directly or via a common cause such as health awareness. This
may be deduced from the fact that the non-participants have a higher risk of death
(Jousilahti et al., 2005; Harald et al., 2007; Karvanen et al., 2016). This dependence
causes missing data to be classified as missing not at random (MNAR; Rubin,
1976). Because the data are MNAR, the population-level risk factors calculated from
the participants’ data are biased, and they usually give an overly healthy view of
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the population. Biased estimates of risk factor prevalence may seriously misinform
decision-makers. Instead of analysing only the participants data, the posterior
distributions of risk factor levels of a whole sample, including non-participants,
should be estimated. This requires external information and modelling assumptions.

In this article, we demonstrate how follow-up data on endpoints associated with
the risk factor of the interest provides external information that allows us to reduce
the bias caused by selective non-participation. We propose a Bayesian method for the
estimation of risk factor prevalence and the missing data mechanism, when the data
are MNAR.

Our datasets origin from the FINRISK studies, which are national HES providing
information about the health of Finns. We improve and extend an earlier work (Kopra
et al., 2015) on the estimation of smoking prevalence from FINRISK data. The key
improvements are: a fully Bayesian model is used, the survival model is more flexible
and informative prior is utilized instead of assumption of conditional independence
(Kopra et al., 2015; equation (2)). Differently from Kopra et al. (2015), the study
years 2002 and 2007 are included in the modelling.

Next section describes the data of the FINRISK studies and follow-up. Section 3
presents the Bayesian model and the priors that we apply to smoking prevalence
estimation. Section 4 explains model fitting, and Section 5 provides a simulation
study on the proposed approach. We evaluate alternative methods in Section 6.
In Section 7, we apply our approach to real data from the FINRISK studies and
provide smoking prevalence estimates for both men and women. Section 8 discusses
the results and methods presented.

2 Data description

Our HES data contain eight FINRISK studies conducted in selected geographical
areas of Finland once in every five years in 1972–2007 (Laatikainen et al., 2003;
Harald et al., 2007). In each study year, persons were selected to the FINRISK studies
in a random sampling stratified by region, gender and 10-year age group. Our data
are restricted to the two regions (Northern Savonia and North Karelia) that have
been included in all eight studies. In total, the data contain 52 325 persons including
9 928 persons with missing smoking indicator.

Each person selected to the study received a letter of invitation, in which he or she
was asked to fill in a survey questionnaire and participate to physical measurements in
the local survey site. If the person participated, the filled questionnaire was collected
and the physical measures were taken. If the person did not participate, then risk
factors are missing, but background variables, study year, age, gender and region
are known from the sampling frame. Table 1 shows that the participation rates have
dramatically decreased from 1972 to 2007. It can be also seen that women have
participated more actively than men in all study years. We also know that person’s
age affects participation (Kopra et al., 2015).

Our HES data were linked together with follow-up data of all participants and
non-participants. The follow-up data contains the exact dates and diagnoses (ICD
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Table 1 Participation rates (%) and size of survey sample (n) by gender, region and year.The participation
rates of 1972 and 1977 are approximated (*) as the region information of non-participants is missing for
these years

North Karelia Northern Savonia

Year Men Women Men Women

1972 % 84.3* 88.5* 88.4* 91.3*
n 2 641 2 607 3 574 3 555

1977 % 85.7* 89.0* 90.1* 93.0*
n 2 323 2 382 3 223 3 391

1982 % 76.1 83.2 80.8 86.0
n 2 007 2 019 1 810 1 566

1987 % 78.8 85.3 80.3 86.3
n 1 971 1 976 979 988

1992 % 68.2 80.8 75.9 83.8
n 984 993 982 990

1997 % 72.1 75.3 70.8 79.8
n 1 052 1 020 990 997

2002 % 66.5 76.2 66.2 78.2
n 1 021 1 011 1 000 1 000

2007 % 63.0 71.9 61.1 70.4
n 811 825 817 820

Total % 77.5 83.5 81.5 87.1
n 12 810 12 833 13 375 13 307

codes) of hospitalizations and deaths. In Finland, this kind of follow-up data can
be collected from administrative registers for both participants and non-participants.
The follow-up period started at the time of study for each person and ended on 31st
December 2012 for all FINRISK study years. Thus, the length of the follow-up period
varies by study years.

It is well known that smoking is a key risk factor for lung cancer and chronic
obstructive pulmonary disease (COPD) (Doll and Hill, 1956; Mannino and Buist,
2007). Thus, we use lung cancer and COPD events together as an endpoint. Table 2
shows that non-participants have a higher rate of disease events than participants.

Table 2 The total count of observed lung cancer and COPD events, events per 1 000 follow-up person
years and participation rate by region and gender

Region Gender Participant Events Events/1 000 years Participation (%)

N. Karelia Men Yes 387 1.75
77.4

N. Karelia Men No 166 3.14

N. Savonia Men Yes 479 1.85
81.6

N. Savonia Men No 129 2.85

N. Karelia Women Yes 75 0.28
83.6

N. Karelia Women No 43 1.02

N. Savonia Women Yes 62 0.21
87.0

N. Savonia Women No 33 0.94

Statistical Modelling 2017; xx(xx): 1–16
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We limit in our analysis the age range to 25–64 years old and select the subset of
healthy persons with respect to our endpoint variables. The two exceptions are 1972
and 1977 studies, which have age ranges of 25–59 and 30–64 years old, respectively.

3 Bayesian model

The modelling is based on the idea that although it is impossible to directly observe the
smoking status of non-participants, we can obtain information on smoking indirectly
from the follow-up data. More precisely, the modelling uses the observed incidence
differences of the smoking-based diseases between participants and non-participants,
which allows us to adjust the estimates of smoking prevalence. Full Bayesian approach
is applied, and model fitting is executed using Markov chain Monte Carlo (MCMC)
methods (Robert and Casella, 2004).

3.1 Notation for the data

We introduce our model using causal models with design (Karvanen, 2015) and make
a difference between measurements and underlying causal variables. The model is
presented in Figure 1. For each person i = 1, . . . , N invited to the survey, we denote
participation indicator by Mi, which takes the value Mi = 1, if person i participated,
and value Mi = 0 otherwise. Value Mi = 0 indicates missing risk factor data.
The indicator of self-reported daily smoking is denoted by Yi and the corresponding
measurement by Y∗

i . Variable Yi takes value 1, if a person is a daily smoker, and
0 otherwise. Class Yi = 0 includes earlier smokers who quitted. The value of Y∗

i
is known for the participants, then Y∗

i = Yi, but missing for the non-participants.
We denote by vector X ∗

i , the variables age ai, gender gi, region ri and study year si

in the background data observed for all sample members. The values gi = 0 stand
for men, and gi = 1 for women. The North Karelia region is denoted by ri = 0 and
Northern Savonia by ri = 1.

We denote Ti as the age at the day of diagnosis, which may also be the age at
the time of death, if a person dies without previous lung cancer or COPD diagnoses
and the death is caused by either of the two diseases. If the person has not been
diagnosed, the corresponding measurement T∗

i is missing, and Ti is right-censored.
Variable Tcens,i is the age of the person i in the end of the year 2012, which is
the end of our follow-up period, or the age of death for the person who has died
before the end of the year 2012. The variable Tobs,i is the minimum of Ti and Tcens,i,
so Tobs,i = min(Ti, Tcens,i), and T∗

cens,i = Tcens,i and T∗
obs,i = Tobs,i.

3.2 Submodels

The joint model for data from an HES linked with follow-up consists of three
submodels:

Statistical Modelling 2017; xx(xx): 1–16
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Xi  background information: age at study, region, gender, year

Yi smoking status

Ti time-to-disease status

Xi* measured background information from the sample

Yi* self-reported smoking status

Tobs,i* measured observed time-to-disease outcome

Tobs,i observed time-to-disease outcome

Tcens,i censoring age

Tcens,i* measured censoring age

mi sample indicator

Mi participation indicator

Xi*

mi

Mi

Yi*

Tobs,i*

Tobs,i

Yi

Xi

Tcens,i

Ti

Tcens,i*

Figure 1 A graph representing the model and the dependencies between the variables of HES data and
the follow-up data. Direct causal effects are represented as arrows. Measurement variables are denoted
with asterisk, for example, X ∗

i , and are presented as filled circles.The causal variables do not have asterisk
symbol (e.g., X i ), and they are drawn unfilled to indicate that they are not observed directly but via
measurement variables.The measurement variables always have one participation indicator (mi or Mi ) and
one causal variable as their parent.The graph tells that X ∗

i , T ∗
obs,i and T ∗

obs,i are collected for each member of
the sample, while Y ∗

i is measured only for participants and is missing for the non-participants

1. a participation model in which participation is explained by daily smoking and
background variables (arrow X i → Mi in Figure 1),

2. a risk factor model for daily smoking given the background variables (arrow
X i → Yi) and

3. a survival model for the follow-up data given the daily smoking and background
variables (arrows Yi → Ti and X i → Ti).

These three submodels together form a joint model for the data, which we call
Bayesian MNAR model, see Figure 1. The arrows X i → Mi and Yi → Mi correspond
to the participation submodel that can be written as P(Mi = 1|X i, Mi). The arrow
X i → Yi corresponds to the risk factor submodel (distribution P(Yi|X i)), and
the arrows Yi → Ti and X i → Ti correspond to the survival model (distribution
P(Ti|Yi, X i)). All the submodels are fitted together because each of them contains
the indicator of smoking, which has missing values to be imputed.

3.3 Participation model

First, our model for participation indicator Mi is

logit(P(Mi = 1|X i, Yi)) = ˛0[gi,si] + �[gi,si]Yi + ˛1[gi,Yi](ai − 45) + ˛2ri, (3.1)
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where gi, si, ai and ri are part of X i, and they stand for gender, study year,
age and region, respectively. Variable Yi stands for smoking. The roles of model
parameters ˛0[gi,si], �[gi,si], ˛1[gi,Yi] and ˛2 are explained further. Parameter ˛0[gi,si] is a
regression coefficient (intercept) which varies over the levels of gi and si, i = 1, . . . , N.
The variable gi is binary and si has eight possible values, which create the total of 16
intercept parameters. The parameters �[gi,si] are gender-specific regression coefficients
modelling how daily smoking affects participation in each year. We also take into
account how the age of person affects participation; the gender-specific coefficients
˛1[gi,0] and ˛1[gi,1] model how age affects participation for non-smokers and smokers,
respectively. The parameter ˛2 describes the differences in participation between the
two regions.

3.4 Risk factor model

Next, we need to model smoking indicator Yi by background variables
X i = (gi, si, ai, ri). We use a logistic regression model

logit(P(Yi = 1|X i)) = ˇ0[gi,ri,si] + (si − ai − 1 938)ˇ1[gi,ri,si], (3.2)

where coefficients ˇ0 and ˇ1 vary between groups defined by combinations of gender
gi, region ri and study year si, similarly as in (3.1). The year of birth si − ai for person
i is centred at its rounded population average 1 938 in the model.

3.5 Survival model

To define a survival model for P(Ti|X i, Yi), a counting process notation is used. Let
Ni(t) stand for the count of disease diagnoses up to age t for person i. Let dNi(t) be
the increment of the counting process over one-year time interval (t, t + 1), and let
t take discrete values 25, 26, . . . , 100. Now, we model dNi(t) with a piecewise
constant hazard model assuming that for each one-year time period, the
gender-specific hazard h0,g(t) remains constant (g = 0, 1 stands for the gender). The
model for follow-up data is

dNi(t) ∼ Poisson(�i(t)) (3.3)

�i(t) =

⎧
⎪⎨

⎪⎩

exp (�1Yi) h0,0(t), given that Ti ≥ t and g = 0

exp (�2Yi) h0,1(t), given that Ti ≥ t and g = 1

0, Ti < t,

(3.4)

where �1 and �2 model how smoking increases the hazard for men and women,
respectively.
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3.6 Prior distributions

For the participation model, we use informative prior distribution for the difference
between smokers and non-smokers. An informative prior for �[gi,si] is derived as
follows. We consider a 45-year-old non-smoker, who participates with probability
p = 0.7, and elicit the corresponding prior probability for a smoker, who is otherwise
similar. We consider that there is a 15% chance that the participation prior probability
p is less than 0.50, about 30% chance for less than 0.60 and 50% chance for less than
0.70. These considerations together with an assumption on a logistic distribution for
�[gi,si] lead to prior distribution

�[gi,si] ∼ Logistic(� = 0, s = 2.05−1),

which makes the prior distribution of p to have expected value E(p) = 0.676 and
95% credible interval [0.281, 0.933]. Here, logistic distribution density function is

flogistic(x|�, s) = e(x−�)/s

s(1 + e(x−�)/s)2
,

for x, � ∈ R and scale parameter s > 0.
The prior distributions for participation model coefficients ˛0[gi,si] and ˛1[gi,Yi] and

risk factor model parameters ˇ0[gi,ri,si] and ˇ1[gi,ri,si] are normal distributions with
mean � = 0 and variance �2 = 1 000 (uninformative priors).

Survival model parameters �1 and �2 are also a priori normally distributed
with � = 0 and �2 = 1 000. Our prior distribution for baseline hazard h0,g(t) is
monotonically increasing with age

h0,g(25) ∼ Uniform(0, 20)
h0,g(t) ∼ Uniform(h0,g(t − 1), 20), where t = 26, 27, . . . , 100,

where g stands for gender, 0 for men and 1 for women. This means that model assumes
that risk of smoking-based diseases only increases with age. This assumption seems
to be in agreement with our data.

4 Model fitting

As the number of model parameters (316) and missing values (9 928) is large, there are
over 10 000 variables to sample at each iteration of the MCMC model fitting process.
This creates a computational challenge for Bayesian model fitting. The Markov chains
typically require thousands of iterations or more to obtain satisfactory convergence,
which requires a lot of computing time.

To impute the missing values for smoking indicators, the data augmentation was
applied (Tanner and Wong, 1987). A Bayesian MNAR model described in Figure 1
and Sections 3.3, 3.4 and 3.5 was used. The augmented data for smoking indicator
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Yi are drawn from fully conditional distribution P(Yi|Mi = 0, X i, Ti), given its parent
nodes (X i) and child nodes (Mi and Ti).

We used Just Another Gibbs Sampler software (JAGS; Plummer, 2003), R (R Core
Team, 2016) and rjags package (Plummer, 2015) to fit the model. Seven parallel
MCMC chains were used. Each chain had 9 000 burn-in iterations, 45 900 actual
iterations with thinning interval 75, which makes a total of 612 iterations per chain to
be recorded. The time consumed for this model fitting using parallel chains was about
107 hours, which makes 7 seconds per each iteration and less than 0.7 milliseconds
per each parameter for one iteration. The high absolute number of missing values
(9 928) explains the long running time. Because of high autocorrelations in the
chains, we decided to use a long thinning interval and many iterations to reduce
the autocorrelations in the saved iterations of the MCMC and larger sample of the
posterior for the final trends. The convergence of the chains was examined both
visually and using Brooks–Gelman R̂-diagnostics (Brooks and Gelman, 1998). All the
R̂ test statistics for model coefficients were below 1.01 which indicates convergence.

5 Simulation study

We carried out a simulation experiment to demonstrate the performance of the model.
The simulated data allow us to compare the performance of the estimated prevalence
of smoking with true prevalence, which is known with the simulated data but not
with the HES data. The actual values of the background variables from the FINRISK
study were used together with parameter estimates from a preliminary analysis. Thus,
the simulation experiment had conditions similar to the real data, for example, the
smoking prevalence had a decreasing trend for men and an increasing trend for
women. For both genders, the participation was selective and the participation rate
had a decreasing trend.

The simulation was implemented using R language, and the data were simulated
from the Bayesian MNAR model presented in Section 3. Because of the computational
burden of model fitting, the model was fitted into a single simulated dataset.

The model fitting for the Bayesian MNAR model with simulated data was
implemented as described in Section 4. All the R̂-diagnostics were below 1.01 which
indicates convergence. We inspected the posterior correlations between the model
parameters and found strong correlations (≥ 0.9 or ≤ −0.9) between some of the
parameters. In the risk factor model, the strongest correlations were observed between
the parameters ˇ0 and ˇ1. The median of these correlations was −0.434 and the range
was [−0.905, 0.661]. Conditioning with Mi, likely causes these posterior correlations.
On the participation model, the strongest posterior correlations were found between
the ˛0[gi,si] and �[gi,si]. For men, those eight correlations ranged between −0.972 and
−0.899, and for women between −0.860 and −0.665. In the survival model, strong
positive correlations occurred particularly between the hazards of consecutive years,
which is natural to this type of models. The highest correlations for men were 0.920
and for women 0.952.
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Figure 2 Trends for the simulation experiment.The red line with triangles is the true proportion of
smokers used in the simulation.The blue line with circles is estimated from participants only and the black
line with squares is model-based posterior mean with 95% credible intervals (dashed black line) calculated
from the simulated data

It can be seen from Figure 2 that with an exception of women in 1972, the
true prevalence is located inside the credible interval and there is no indication of
systematic bias in the posterior mean. In contrast, the prevalence calculated using
only the participants systematically underestimates the true prevalence. As the same
family of models was used both to simulate the data and to fit the parameters, the
Bayesian MNAR approach is expected to perform very well. However, the experiment
demonstrates that the model can be estimated from the data.
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6 Alternative methods

In addition to the Bayesian MNAR approach, we considered two alternative
modelling approaches and the complete case analysis. Both modelling approaches
utilize the missing at random (MAR) assumption, and the complete case analysis
uses data on participants only. In terms of Figure 1, the MAR assumption omits
the arrow Yi → Mi, which means that participation is not selective with respect to
smoking.

First, the Bayesian MAR approach differs from the Bayesian MNAR approach
such that the entire survival model (3.4) is omitted, and the regression coefficient
�[gi,si] is fixed to zero in participation model (3.1).

We also used the frequentist MAR model which was implemented using the
mice package in R (van Buuren and Groothuis-Oudshoorn, 2011). The missing
smoking indicator was imputed using a logistic regression model that had full
interactions between year of birth, gender, region and year, and full interactions
between gender, event indicator and age at the event/censoring. The year of birth
and the age at event/censoring were used as linear covariates and the other variables
were categorical.

We fitted these alternative approaches to data simulated from the MNAR model
which is selective with respect to smoking. The trend estimates are presented in
Appendix in Table A2. We calculated root mean square errors (RMSE) for the
Bayesian MNAR model and each of the alternative approaches. The RMSE was
calculated using formula

RMSE(y, ytrue) =
√
√
√
√1

n

n∑

i=1

(yi − ytrue,i)2,

where y is the estimated smoking prevalence (%) and ytrue is the true smoking
prevalence from simulation. The RMSE was calculated over the regions, the genders
and the study years, which gives one RMSE value for each approach.

The Bayesian MNAR approach had the smallest RMSE, 1.65. The Bayesian MAR
and the frequentist MAR methods have very similar RMSE with each other, 3.34 and
3.37, respectively. These two methods were slightly more accurate than the complete
case approach with RMSE 3.48.

7 Application to FINRISK data

The trends of daily smoking for the FINRISK data estimated using the Bayesian
MNAR model are reported in Figure 3 and compared to participant trends, which
are often reported in HES. The difference between the smoking prevalence estimates
of the complete case (participants) and the Bayesian MNAR approaches is the highest
for the study years 1977, 1982 and 1987 (Figure 3 and Table A1 in Appendix).
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Figure 3 Participant trends (blue line with circles) and model-based posterior trends (black line with
squares) with 95% credible intervals (dashed black line) for the FINRISK data. For numeric presentation of
trends, seeTable A2 in Appendix

Starting from 1992, the complete case trends are within the 95% credible interval of
the Bayesian MNAR model, but they are systematically below the posterior mean.
The proportion of missing data is higher for the later study years than the earlier
ones, which makes the credible intervals wider.
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The values of the region variable ri for the study years 1972 and 1977 were missing
for non-participants. We used a single imputation with fixed probabilities
P(ri = 1|si = 1972) = 0.495 and P(ri = 1|si = 1977) = 0.493 as in Kopra et al.
(2015). We decided to use single imputation a prior to model fitting because the
regions seemed to be rather similar with respect to smoking prevalence and the
participation rates were high.

We executed sensitivity analysis to find out if model can be fitted with even less
informative prior. We tried prior distributions for � with s parameter set to (2.05/2)−1,
which corresponds to doubling the prior variance. We found out that the Markov
chains do not converge. More precisely, convergence problems were found with
�-parameters for which the R̂s ranged between 1.097 and 1.828 after 45 900 iterations
and 9 000 burn-in. Thus, it appears that vague prior distributions are not applicable.

8 Discussion

We have proposed the Bayesian MNAR modelling approach to reduce the
non-participation bias and applied the approach to the FINRISK studies. In a
simulation experiment, we compared our approach to the Bayesian MAR approach,
to the complete case analysis, and the frequentist MAR imputation. The latter two
were easier to use than the Bayesian MNAR approach, but did not substantially
reduce the non-participation bias. The proposed approach appears to reduce the
non-participation bias.

Trends by the Bayesian and the frequentist MAR approaches are essentially the
same as participants’ trends. Thus, the MAR approaches do not reduce the bias of
risk factor levels by much. Although there may be ways to improve the imputation
model (White and Royston, 2009), the MAR imputation do not account for selective
non-participation.

The information about non-participants’ risk factor levels comes from the survival
data. The risk factor of interest must be a strong predictor of the survival outcome.
The estimation of survival model parameters requires that a sufficient number of
events have been recorded. This implies that the length of follow-up must be long
enough, and if the event is rarely observed, the number of persons must be high.
The information obtained from the survival model may be insufficient by itself and
need to be supported by an informative prior on the selection mechanism.

In many countries, it is not technically or legally possible to link the HES data of
non-participants to follow-up data. The requirement on the availability of survival
data for both participants and non-participants is a major limitation for the proposed
approach.

The Bayesian model fitting is often a computational challenge, particularly when
the amount of missing data is large. The memory management and computation
time were issues in our case study due to a large amount of missing data. In our
first attempts, we tried to save all the imputations, which filled the RAM memory of
the computer (16 GB) quite rapidly. We later realized that it is possible to calculate
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sufficient (summary) statistics, for example, count of smokers and non-smokers by
gender, year and region, and store only them. We also reduced the time required per
one iteration by coarsening the continuous covariates (the age) of the survival model
and summing over discrete or discretized covariates, and by modelling the number
of events in each risk group using Poisson distribution.

Another challenge was the posterior correlations caused by the model structure
and non-random missingness. One possibility to alleviate this problem could be
to develop a custom MCMC algorithm with blocked updating of the parameters
with high posterior correlations (Haario et al., 2001). However, this often requires
custom programming and is, therefore, much more laborious than an application
based on JAGS, which we have applied. Thus, if one needs to use data with more
missing data than in our case study or multiple variables with MNAR missingness,
we recommend using some specialized MCMC algorithms or possibly the iterated
importance sampling algorithm (Celeux et al., 2006).

Additional fully observed covariates can be added into the model without excessive
increase in computational burden. If more variables with missing data are imputed,
the model fitting is slowed down proportional to increase of absolute amount of
missing values. This is because at each MCMC iteration all the missing values need
to be imputed.

Selective non-participation in HES is an important problem that may have
implications to the decisions on health policy. Our solution is not simple to implement,
but the reduction of selection bias makes it worth of the effort.
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APPENDIX

Table A1 The trends and 95 % credible intervals of simulation experiment and alternative approaches

Northern Karelia North Savonia

Year Method Men Women Men Women

1972 Bayes+MAR 50.9 (50.2, 51.7) 12.2 (11.8, 12.7) 50.3 (49.6, 51.0) 14.2 (13.7, 14.6)
1972 Bayes+MNAR 49.5 (47.8, 51.2) 12.4 (11.7, 13.2) 48.8 (47.3, 50.5) 14.7 (14.0, 15.5)
1972 Complete case 50.6 (48.5, 52.7) 12.2 (10.8, 13.5) 50.0 (48.2, 51.7) 14.2 (13.0, 15.4)
1972 mice 51.0 (49.0, 53.0) 12.2 (10.8, 13.6) 50.4 (48.6, 52.1) 14.2 (13.0, 15.5)
1972 True 49.1 12.9 48.9 15.3

1977 Bayes+MAR 42.6 (41.8, 43.4) 8.8 (8.5, 9.2) 42.9 (42.2, 43.7) 11.9 (11.5, 12.3)
1977 Bayes+MNAR 46.9 (45.7, 48.3) 12.2 (11.2, 13.2) 47.3 (45.8, 48.8) 16.6 (15.7, 17.7)
1977 Complete case 42.6 (40.5, 44.8) 8.9 (7.7, 10.1) 43.0 (41.1, 44.8) 11.9 (10.8, 13.1)
1977 mice 42.8 (40.7, 45.0) 8.8 (7.4, 10.3) 43.1 (41.3, 44.9) 11.9 (10.6, 13.2)
1977 True 47 13.2 47.5 17.5

1982 Bayes+MAR 38.4 (37.2, 39.5) 14.5 (13.9, 15.2) 42.0 (40.6, 43.3) 13.1 (12.3, 13.9)
1982 Bayes+MNAR 44.0 (41.4, 46.5) 18.3 (16.8, 19.9) 46.7 (43.5, 50.2) 17.7 (16.0, 19.4)
1982 Complete case 38.2 (35.8, 40.6) 14.5 (12.8, 16.2) 41.7 (39.0, 44.4) 13.0 (11.2, 15.0)
1982 mice 38.6 (36.2, 41.1) 14.4 (12.7, 16.0) 42.0 (39.5, 44.6) 13.0 (11.1, 15.0)
1982 True 45 19.6 47.7 19.7

1987 Bayes+MAR 35.1 (34.0, 36.4) 15.5 (14.8, 16.2) 40.1 (38.3, 42.0) 13.0 (12.0, 14.1)
1987 Bayes+MNAR 38.9 (36.2, 41.1) 16.3 (15.2, 17.4) 44.7 (41.8, 47.3) 13.9 (12.6, 15.3)
1987 Complete case 34.8 (32.4, 37.2) 15.4 (13.7, 17.2) 39.8 (36.2, 43.4) 12.9 (10.7, 15.3)
1987 mice 35.0 (32.5, 37.5) 15.5 (13.8, 17.2) 40.5 (36.9, 44.2) 13.3 (10.9, 15.6)
1987 True 39 17.4 44.1 15.5

1992 Bayes+MAR 35.0 (32.9, 37.1) 12.7 (11.6, 13.9) 37.7 (35.7, 39.6) 15.0 (13.9, 16.2)
1992 Bayes+MNAR 32.6 (28.9, 37.2) 15.6 (13.6, 17.8) 36.0 (32.2, 40.1) 16.7 (14.9, 18.9)
1992 Complete case 33.8 (30.3, 37.4) 12.6 (10.3, 15.0) 36.8 (33.2, 40.4) 14.8 (12.4, 17.4)
1992 mice 35.2 (31.4, 39.0) 12.7 (10.3, 15.0) 38.0 (34.3, 41.8) 15.2 (12.7, 17.8)
1992 True 38 16 39.8 17.4

1997 Bayes+MAR 35.2 (33.1, 37.4) 19.4 (18.1, 20.8) 33.4 (31.7, 35.3) 18.4 (17.2, 19.8)
1997 Bayes+MNAR 34.3 (29.8, 40.0) 19.9 (17.8, 22.0) 34.1 (29.7, 38.9) 19.1 (16.7, 22.0)
1997 Complete case 34.0 (30.5, 37.7) 18.9 (16.2, 21.7) 32.6 (29.3, 36.0) 17.9 (15.3, 20.6)
1997 mice 35.4 (31.5, 39.2) 19.5 (16.8, 22.1) 33.8 (30.3, 37.4) 18.3 (15.9, 20.8)
1997 True 34.9 21.8 33.5 21.2

2002 Bayes+MAR 44.2 (42.0, 46.3) 17.9 (16.5, 19.3) 35.2 (33.1, 37.2) 22.2 (20.7, 23.7)
2002 Bayes+MNAR 44.2 (38.3, 50.2) 17.2 (15.1, 19.6) 36.2 (30.7, 42.9) 22.8 (20.4, 25.5)
2002 Complete case 42.6 (38.8, 46.3) 17.2 (14.6, 20.0) 33.6 (30.1, 37.2) 22.0 (19.1, 25.0)
2002 mice 44.2 (40.5, 48.0) 18.1 (15.3, 20.8) 35.2 (31.3, 39.1) 22.1 (19.5, 24.8)
2002 True 44.3 19.1 35.3 25

2007 Bayes+MAR 41.8 (39.2, 44.2) 29.6 (27.7, 31.5) 35.2 (32.7, 37.7) 22.4 (20.6, 24.2)
2007 Bayes+MNAR 39.7 (33.0, 46.4) 28.1 (24.7, 31.5) 33.6 (27.7, 40.5) 21.2 (18.2, 24.5)
2007 Complete case 39.9 (35.7, 44.2) 28.9 (25.3, 32.7) 33.3 (29.3, 37.5) 21.7 (18.5, 25.1)
2007 mice 42.1 (37.8, 46.3) 29.4 (26.1, 32.7) 35.0 (30.6, 39.3) 22.5 (19.3, 25.8)
2007 True 37.9 28.8 32.3 23.5
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Table A2 Participant trends and model-based posterior trends with 95% credible intervals for the FINRISK
data

Northern Karelia North Savonia

Year Method Men Women Men Women

1972 Bayes 50.3 (49.0, 51.9) 11.9 (11.0, 12.9) 49.7 (48.6, 50.8) 13.5 (12.7, 14.5)
1972 Complete case 52.2 (50.3, 54.5) 11.7 (11.0, 13.9) 50.9 (49.4, 53.0) 13.2 (12.0, 14.6)

1977 Bayes 48.5 (46.5, 51.0) 13.2 (12.0, 14.5) 46.4 (45.1, 47.9) 14.4 (13.4, 15.4)
1977 Complete case 43.1 (41.1, 45.4) 8.9 (7.5, 10.4) 43.1 (41.4, 45.0) 11.0 (9.8, 12.3)

1982 Bayes 43.9 (41.3, 46.5) 18.9 (17.0, 21.1) 46.5 (44.0, 49.0) 18.8 (17.2, 20.6)
1982 Complete case 36.1 (34.0, 39.1) 14.2 (12.6, 15.9) 42.6 (40.6, 45.6) 15.9 (14.4, 18.2)

1987 Bayes 39.0 (36.4, 42.5) 17.8 (16.3, 19.6) 43.6 (40.7, 46.7) 17.2 (15.5, 19.2)
1987 Complete case 34.4 (33.7, 38.9) 15.7 (13.3, 16.6) 39.8 (36.8, 43.6) 15.3 (13.0, 17.7)

1992 Bayes 35.5 (31.2, 39.8) 17.6 (15.6, 20.0) 38.3 (35.2, 41.7) 20.1 (18.0, 22.1)
1992 Complete case 31.2 (28.3, 36.1) 16.0 (14.2, 19.2) 35.3 (32.2, 39.7) 18.0 (15.8, 20.7)

1997 Bayes 33.5 (29.8, 37.5) 20.2 (17.9, 22.9) 32.5 (28.6, 36.8) 19.5 (17.8, 21.5)
1997 Complete case 31.1 (28.3, 35.4) 16.5 (14.4, 19.6) 30.7 (27.7, 35.5) 17.0 (14.7, 19.6)

2002 Bayes 34.5 (30.4, 39.2) 24.8 (22.2, 27.6) 36.5 (32.4, 41.1) 21.3 (19.0, 24.1)
2002 Complete case 32.5 (28.4, 35.8) 22.4 (19.9, 25.4) 34.3 (31.2, 38.6) 19.2 (17.0, 22.1)

2007 Bayes 30.4 (25.5, 35.5) 18.6 (15.9, 21.7) 29.3 (24.4, 35.5) 20.4 (17.6, 23.5)
2007 Complete case 29.2 (26.0, 34.0) 17.3 (14.5, 20.5) 28.3 (25.7, 34.1) 19.5 (16.9, 23.0)
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Abstract

Aims: We aim to adjust for potential non-participation bias in
the prevalence of heavy alcohol consumption.

Methods: Population survey data from Finnish health examina-
tion surveys conducted in 1987-2007 were linked to the administrative
registers for mortality and morbidity follow-up until end of 2014. Util-
ising these data, available for both participants and non-participants,
we model the association between heavy alcohol consumption and
alcohol-related disease diagnoses.

Results: Our results show that the estimated prevalence of heavy
alcohol consumption is on average 1.5 times higher for men and 1.8
times higher for women than what was obtained from participants
only (complete case analysis). The magnitude of the difference in the
mean estimates by year varies from 0 to 9 percentage points for men
and from 0 to 2 percentage points for women.

Conclusion: The proposed approach improves the prevalence es-
timation but requires follow-up data on non-participants and Bayesian
modelling.

Keywords: survey, Bayesian analysis, register linkage, non-response
bias, data missing not at random

Introduction

Reliable information about the prevalence of heavy alcohol consumption
is important because alcohol-related health problems and undesired social
consequences (Klingemann and Gmel, 2001) cause significant costs in many
countries (Rehm et al., 2009). Prevalence estimates can be obtained through
health surveys, but the low participation rates (Galea and Tracy, 2007) im-
peril the reliability of the results. If the participation is selective with re-
spect to alcohol consumption, the estimates of alcohol use suffer from non-
participation bias, which hinders their usability for decision-making. If non-
participants have worse health than participants, the bias usually leads to
an overly positive image of the health of the population.

Empirical evidence suggests that participation is often selective concern-
ing alcohol consumption. Studies from Canada (Zhao et al., 2009), Eng-
land (Boniface et al., 2017), Finland (Karvanen et al., 2016; Kopra et al.,
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2017b), Norway (Torvik et al., 2012), Scotland (Gorman et al., 2014) Swe-
den (Romelsjö, 1989), and the United States (Dawson et al., 2014) conclude
that non-participants drink more alcohol than participants. Follow-up stud-
ies have shown that non-participants tend to have a higher risk of alcohol-
related diseases (Romelsjö, 1989; Jousilahti et al., 2005; Gorman et al., 2014;
Christensen et al., 2015; Karvanen et al., 2016), and increased risk of hospital-
isations and death (Jousilahti et al., 2005; Christensen et al., 2015; Karvanen
et al., 2016), which indicates that non-participants tend to use more alcohol
than participants. A study from Netherlands (Lahaut et al., 2002) found
that non-participants are more often abstainers than participants, which is
not directly interpretable as a conflicting result because many social factors
may be associated with abstaining. An older study from Sweden did not find
an indication of selective participation (Halldin, 1985).

In addition to selective non-participation, bias may be introduced by im-
perfect coverage of the target population by the survey sampling frame, and
by questionnaire design. First, if some individuals of target population can-
not be invited to a survey, the sample does not represent the population
of interest and the estimates will be biased. Mäkelä and Huhtanen (2010)
observed that in Finland, persons who cannot be invited to a survey due to
missing home address have about four times higher risk for alcohol-related
deaths. This caused a small bias in the population estimates. Second, Liv-
ingston and Callinan (2015) claim that quantity-frequency design of the
alcohol use questions underestimates alcohol consumption by one-third com-
pared to asking about drinking with a within-location beverage-specific de-
sign. Gmel (2000) reported that alcohol as a subject of survey study does
not have an impact on participation in comparison to similar questionnaire
without alcohol-related questions.

Studies from the United States (Dawson et al., 2014) and Finland (Mäkelä,
2003) have shown that the non-participation bias cannot be adjusted using
just weights depending on basic demographic variables. Some studies adjust
for selective non-participation utilising continuum of resistance model (Zhao
et al., 2009; Meiklejohn et al., 2012; Boniface et al., 2017) but there are also
other methods (Karvanen et al., 2016; Kopra et al., 2017b).

In Finnish health surveys participation has been decreasing, while re-
ported alcohol consumption has been mainly increasing from 1960s to 2007
(Mäkelä et al., 2012). Jousilahti et al. (2005) report that in Finland non-
participants have a higher risk of alcohol-specific diseases and death (Jousi-
lahti et al., 2005), which is why we expect the estimates of heavy alcohol
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consumption to be biased. The difference in the disease risk could be ex-
plained by heavier alcohol consumption among non-participants. From pre-
vious studies (Harald et al., 2007; Hirvonen, 2017), we know that participa-
tion in the FINRISK Study is affected by age, gender, area, and education
(Reinikainen et al., 2017).

We aim to adjust for selective non-participation for heavy alcohol con-
sumption and to estimate the prevalence of heavy alcohol consumption with
reduced bias. We present a Bayesian solution that is based on mortality and
morbidity follow-up data.

Methods

Data

We used data from the National FINRISK Study, which is a series of cross-
sectional health examination surveys (Borodulin et al. , 2017) conducted in
Finland every fifth year since 1972. We analyzed data for the years 1987–
2007. Years 1972–1982 as well as 2012 were excluded because the questions
of alcohol consumption were too different from the questions in 1987–2007.

In 1987 and 1992 studies the questions were essentially the same. In
1997 the study questions regarding the usage of cider or mild wine (alc. vol
under 5%) were added. Otherwise the study remained the same as earlier.
In 2002, question regarding comsumption of red wine and other wines were
separated from each other. Also in 20020, the total alcohol consumption was
no more base don several alcohol beverage-specific questions but participants
were adviced to calculate their number of alcohol portions (standard drinks)
consumed and sign asuitable class from quantity-frequency table. In 2007,
the alcohol questions were the same as in 2002, but the instructions for the
calculation of daily alcohol consumption were improved.

The surveys provide data on 25–74 -year-old adults from six regions of
Finland. We restrict the data to people aged 25–65 -years since oldest age
group 65–74 years old was not available in all areas until 2007. The survey
consists of questionnaires, and a health examination carried out at a local
study clinic. The sample was drawn from the National Population Register
and was stratified by region, gender and 10-year age-group. In total, there
are 44, 317 invitees including 31, 567 participants. The survey data contains
self-reported alcohol consumption and background variables, age, gender,
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region and study year for the whole sample. The survey utilised a beverage-
specific quantity-frequency questions on alcohol use in the first three surveys
and graduate frequency measure in the latter two surveys. The questions
related to alcohol consumption are provided in Appendix B. The study ques-
tionnaires in 1987, 1992 and 1997 asked alcohol usage one type of alcohol
beverages at a time: beer, spirits/vodka, long drink or cider (in 1997), wines
and mild wines (in 1992 and 1997). In 2002 and 2007 the questionnaire was
different, and individuals reported their alcohol consumption for all beverage
types in one question.

From these questions, a number of standard drinks consumed per week
during a previous 12 months was calculated. One standard drink equals 12
grams of pure alcohol which is equivalent to, e.g, one bottle of beer (33cl,
4.7 volume percent of alcohol). Based on the number of standard drinks, the
(self-reported) total amount of 100% alcohol consumed in the previous 12
months was calculated.

Since our main interest was to estimate the prevalence of heavy alcohol
users, we classified participants as heavy alcohol consumers and others (non-
heavy alcohol consumers) as follows. The persons who reported consuming on
average at least 24 standard drinks per week for men or at least 16 standard
drinks per week for women during the one-year period before the examination
were considered heavy alcohol consumers.

The survey data were linked to three registers: The Register of Completed
Education and Degrees (Statistics Finland, 2016), Care Register for Health
Care (National Institute for Health and Welfare , 2017) and Cause of Death
Register (Statistics Finland, 2017) using personal identification code. The
register-based data were available for both participants and non-participants.
The level of education is categorised according to the International Standard
Classification of Education (ISCED, 2011). We classified education into three
levels: 1) high level (tertiary education, ISCED levels 5-8), 2) middle level
(secondary education, ISCED levels 3-4) and 3) low level (primary education
or less or unknown, ISCED levels 0-2). The Care Register gives data about
the hospital visits with dates and ICD-codes for both participants and non-
participants. From the Causes of Death Register, we obtain data about dates
and ICD-codes of the cause of death.

Follow-up data contains the time-to-event (age) and ICD code of the first
alcohol-related disease diagnosis or death. The ICD-codes we considered to
be alcohol related are listed in Table 1. The follow-up begins from the survey
and ends at the end of 2014. Persons who have neither alcohol-related disease
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diagnosis nor alcohol-related cause of death are censored at the end of the
follow-up. Deaths not related to alcohol are treated as censorings.

Table 1: The ICD-codes interpreted as alcohol-related events.
ICD-9:

291 Alcohol-induced mental disorders
303 Alcohol dependence syndrome
357.5 Alcoholic polyneuropathy
425.5 Alcoholic cardiomyopathy
535.3 Alcoholic gastritis
571.0 Alcoholic fatty liver
571.1 Acute alcoholic liver disease
571.2 Alcoholic cirrhosis of liver
571.3 Alcoholic liver damage, unspecified
577.0D-F Alcoholic disease of the pancreas, acute
577.1C-D Alcoholic disease of the pancreas, chronic
980.0 Toxic effect ethyl alcohol
980.2 Toxic effect of isopropyl alcohol
980.8 Toxic effect of other specified alcohols
980.9 Toxic effect of other unspecified alcohol
E851 Accidental poisoning by alcohol

ICD-10:

F10 Mental and behavioural disorders due to use of alcohol
G31.2 Degeneration of nervous system due to alcohol
G62.1 Alcoholic polyneuropathy
G72.1 Alcoholic myopathy
I42.6 Alcoholic cardiomyopathy
K29.2 Alcoholic gastritis
K70 Alcoholic liver disease
K85.2 Alcohol-induced acute pancreatitis
K86.0 Alcohol-induced chronic pancreatitis
T51 Toxic effect of alcohol
X45 Accidental poisoning or other exposure to alcohol
Y15 Poisoning by and exposure to alcohol, undetermined intent
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Complete case analysis

The complete case analysis (e.g. mean estimate from the participants) as-
sumes that participation is not selective concerning alcohol consumption.
Violations of this assumption lead to bias. We compared the results of com-
plete case analysis to a Bayesian approach, which relies on more realistic
assumptions and allows for selective non-participation concerning heavy al-
cohol use.

Modelling approach

We applied a Bayesian approach introduced in (Kopra et al., 2017a) to es-
timate the prevalence of heavy alcohol consumption. The Bayesian model
consists of three sub-models which are fitted simultaneously. The sub-models
are:

1. Participation model,

2. Risk factor model, and

3. Survival model.

The mathematical formulas for the models are given in Appendix A.
The participation model describes which variables affect participation.

Participation is defined as a binary indicator (0 or 1) for the availability
information on alcohol consumption. This model is a logistic regression model
with linear covariates for study year and age, and categorical variables for the
region (4 levels), education (3 levels) and the alcohol consumption (binary).
The model also takes into account the possible interactions of gender and
study year, gender and alcohol consumption, and study year and alcohol
consumption.

The risk factor model describes how alcohol consumption (heavy or non-
heavy) varies by background variables. By background variables we mean
age, gender, region, study year and education. The model is a logistic regres-
sion model with interactions for the year of birth with gender, region, study
year and education.

The survival model describes the relationship between alcohol consump-
tion and alcohol-related diseases. All disease events are combined and mod-
elled as one survival outcome. The survival model is a piecewise constant
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hazard model with one-year baseline hazard period terms. The model as-
sumes monotonically increasing baseline hazard, which is accomplished us-
ing prior specification. In addition to baseline hazard, alcohol consumption
is used as a regressor. Both baseline hazard terms and the regression co-
efficient are gender-specific. The model assumes that the disease risk of
non-participants must be between the risks of heavy alcohol consumer par-
ticipants and other participants. This follows from our reasoning that if the
risk of non-participants were the same as the risk of heavy alcohol consumers,
we would expect all of them be heavy alcohol consumers. Similarly, if the
risk of non-participants equaled to the risk of non-heavy alcohol consumers,
we would expect none of them to be heavy alcohol consumers.

Prior distributions

We used weakly informative prior distributions that reflect the existing knowl-
edge but have variances large enough to allow for surprises. This approach is
recommended in textbooks on Bayesian statistics (Gelman et al., 2014), and
there exists guidelines for elicitation of prior distributions (O’Hagan et al.
, 2006). The participation model needed an informative prior for the effect
of heavy alcohol consumption on the participation, i.e., for the strength of
selectivity mechanism. Some degree of subjectivity cannot be avoided in the
prior specification. To define a weakly informative prior, we took a 45-year-
old non-heavy alcohol consumer who participates with probability 0.7 as a
reference and considered the prior probability for a heavy alcohol consumer
who is otherwise similar. We elicit that there is 25% chance that person par-
ticipates with probability p lower than 0.5 (P (p ≤ 0.5) = 0.25), 35% chance
for p ≤ 0.6, and 50% chance for p ≤ 0.7. The functional form of the prior
distribution was chosen to be logistic distribution. These elicitations lead to
logistics prior distribution with expected value zero and variance 1/2.05.

In the survival model, we applied monotonically increasing baseline haz-
ards separately for men and women. The prior distribution for the first
hazard term (25–26-year-olds) was a uniform distribution with a range from
0 to 20. From second hazard term (26–27-year-olds) to the last hazard term
(99–100-years-old), each term had a uniform distribution with the lower limit
being the value of previous baseline hazard term and upper limit 20.

All the remaining model parameters had normally distributed priors with
zero mean and variance 1000. The prior distributions are presented using
mathematical notation in Table 4 of Appendix A.

8



Imputations and model fitting

Alcohol consumption was missing for the non-participants. These missing
values (heavy or non-heavy) were imputed simultaneously with Bayesian
model fitting using data augmentation (Tanner and Wong, 1987). The model
was fitted using Markov chain Monte Carlo (MCMC) (Robert and Casella,
2004) and implemented with Just Another Gibbs Sampler (JAGS) -software
(Plummer, 2003) and R software (R Core Team, 2017) with rjags -package
(Plummer, 2015). The convergence of MCMC chains were investigated us-
ing Brooks-Gelman R̂ diagnostics (Brooks and Gelman, 1998), and all the
R̂s were below 1.01 which indicates convergence. The model fitting utilised
computational resources of IT Center for Science Ltd (CSC).
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Results

Descriptive statistics

In Table 2, we present the descriptive statistics on age, education and gender.
These variables are examined by study year, and comparisons can be made
between participants and non-participant as well as between heavy alcohol
consumers and other alcohol consumers.

The average age of the non-participants was lower than the average age of
the participants. Over the years, the average age appears not to have changed
much for the non-participants, but it has slightly increased for the partici-
pants. Among participants, the average age of heavy alcohol consumers has
increased more rapidly than for non-heavy alcohol consumers. The average
age of heavy alcohol consumers was 41.7 in 1987 (44.4 for non-heavy) and it
has increased between each study being 47.3 for heavy alcohol consumers and
45.5 for non-heavy alcohol consumers in 2007. The average age of non-heavy
alcohol consumers has also increased between the studies, except between
the 1997 and 2002 when it decreased by 0.2 years.

The level of education has increased for both participants and non-par-
ticipants during the study period. The non-participants tend to have low
education more often than participants, and participants tend to have high
education more often than non-participants. In 1987, there were a higher
proportion of highly educated participants among heavy alcohol consumers
than among non-heavy alcohol consumers. In 2007, the situation was op-
posite; the proportion of highly educated persons is higher for non-heavy
alcohol consumers than for the heavy alcohol consumers. The proportion
of women among participants has slightly increased from 52.0% to 53.4%
during 1987–2007. Among non-heavy alcohol consumers, the proportion is
higher: 52.7%–55.3%. Women are a minority among heavy alcohol con-
sumers. There were 15.9% women among heavy alcohol consumers in 1987,
and the proportion has notably increased being 27.8% in 2007.

The proportion of women was higher among the participants than among
non-participants. The proportion of women among participating heavy alco-
hol users has been rapidly increasing over the years, while the corresponding
proportion had not increased by much among non-heavy alcohol consumers.

The number of invitees, the participation rate and the number of events
for both participant and non-participant men and women are presented in
Table 3. During the study period, the proportion of heavy alcohol consumers
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Table 2: Description of background information by study year for non-
participants, participants, and heavy and non-heavy alcohol consumers
among participants.

Participants
Year Non-participants

All
Heavy Moderate

alcohol consumers alcohol consumers
Average age:

1987 42.5 44.4 41.7 44.4
1992 41.8 44.7 44.5 44.7
1997 42.8 45.0 45.0 45.0
2002 42.3 44.9 45.7 44.8
2007 41.9 45.6 47.3 45.5

High education (%):
1987 13.6 18.5 23.0 18.4
1992 18.4 26.6 30.2 26.5
1997 24.7 29.9 31.4 29.8
2002 25.6 35.7 32.7 35.8
2007 27.7 38.6 34.3 38.8

Middle education (%):
1987 30.6 31.8 31.0 31.8
1992 35.6 34.9 34.4 34.9
1997 37.7 38.1 37.6 38.1
2002 41.8 40.6 43.5 40.4
2007 45.3 44.2 45.5 44.1

Low education (%):
1987 55.8 49.7 46.0 49.8
1992 46.1 38.5 35.4 38.6
1997 37.6 32.1 31.0 32.1
2002 32.6 23.8 23.9 23.8
2007 27.0 17.2 20.2 17.1

Women (%):
1987 42.3 52.0 15.9 52.7
1992 40.5 53.0 21.2 54.1
1997 43.2 52.9 22.8 54.3
2002 41.6 53.6 29.0 54.9
2007 42.7 53.9 27.8 55.3
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Table 3: Number of invitees, the participation rate, the prevalence of heavy
alcohol consumption based on participants and Bayesian modelling (posterior
mean), and the number of alcohol-related incident events (per 1000 follow-up
years) for the non-participant and the participant men and women.

Alcohol-related incident events
Participation Prevalence Posterior (per 1000 follow-up years)

Year Invited N rate for participants mean Participants Non-participants
Men

1987 3910 79.5% 5.0% 9.6% 202 (2.8) 91 (5.2)
1992 3888 73.3% 7.7% 15.0% 168 (2.9) 128 (6.5)
1997 4034 70.0% 9.2% 9.7% 150 (3.2) 103 (5.4)
2002 3955 66.5% 14.4% 22.9% 118 (3.6) 62 (3.8)
2007 3202 61.8% 11.0% 12.8% 47 (3.1) 35 (3.7)

Women
1987 3961 85.1% 0.7% 2.4% 52 (0.6) 29 (2.0)
1992 3951 81.0% 2.5% 4.4% 46 (0.7) 23 (1.5)
1997 4031 75.8% 3.7% 5.3% 25 (0.5) 37 (2.3)
2002 4019 75.4% 5.7% 5.9% 34 (0.9) 13 (1.0)
2007 3278 71.3% 4.0% 5.8% 12 (0.7) 10 (1.3)

has increased for both men and women among participants, and simultane-
ously the participation rate has decreased.

The probabilities for not having alcohol-related disease diagnosis up to the
given age for men and women are presented by Kaplan-Meier survival plots
(Figure 1). The top row shows that the non-participants were more likely to
have alcohol-related diagnoses than participants. The lower row shows that
the risk for non-participants lies between the risks of heavy and non-heavy
alcohol consumers, which is a requirement for the utilised Bayesian model.
The number of persons with a disease diagnosed in each group is reported
next to the survival curve in the Figure 1.

Adjusted prevalences of heavy alcohol consumption

Figure 2 presents the trends of the prevalence of heavy alcohol consumption,
based on complete case analysis and the Bayesian modelling. It can be seen
that the mean estimates of the Bayesian approach lie above the estimates of
the complete case analysis. The numeric values are presented in Table 3.

To compare the prevalence estimates based on participants only, and the
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Figure 1: Kaplan-Meier survival plots for men and women comparing the
probabilities of not having alcohol-related diagnoses among participants and
non-participants (upper panels) and for heavy, non-heavy alcohol consumers
and non-participants (lower panels). The number of persons with a disease
diagnosed in each group is reported within parenthesis.

13



posterior estimate for the prevalence of entire survey, absolute and relative
differences can be calculated. For men, the absolute difference of the yearly
prevalence estimates for 1987–2007 are 4.6, 7.3, 0.5, 8.6, and 1.8 percentage
points calculated from Table 3, respectively. Those lead to average difference
of 4.6 percentage points. The corresponding relative differences for men are
1.93 (i.e. almost a two-fold difference), 1.95, 1.06, 1.6 and 1.17, respectively,
and average relative difference is 1.5. For women, the corresponding values
are yearly absolute differences; 1.7, 1.9, 1.6, 0.3 and 1.9, respectively, leading
to average absolute difference of 1.5 percentage points. The yearly relative
differences are 3.39, 1.77, 1.42, 1.04 and 1.47, respectively, leading to average
relative difference of 1.8, see Table 3.

For men, the mean estimates based on Bayesian model vary year by year,
but the credible intervals do not exclude the possibility of a monotonically
increasing trend from 1987 to 2002. The complete case estimates are outside
of the 90% credible interval of Bayesian trends in 1987, 1992, and 2002.

The credible intervals are narrower for women than for men. For women,
the complete case prevalence estimates are outside of the 90% credible inter-
vals of Bayesian trends in 1987 and 1992, and are within the credible interval
in 1997, 2002 and 2007.
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Figure 2: Comparison of prevalence estimates of complete case analysis and
Bayesian multiple imputation adjusted for education. Note that the scales
of the vertical axis for men and women are different from each other.
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Discussion

There is evidence that non-participation in a survey asking about alcohol
consumption is selective with respect to heavy alcohol consumption in Fin-
land and in many other countries. We studied the prevalence of heavy alcohol
consumption based on data from the National FINRISK Study, which suffer
from selective non-participation. In FINRISK data, the average self-reported
alcohol consumption for men was equal to 5.9 liters and for women 1.9 liters
of pure 100% alcohol per year. For comparison, the national consumption
statistics by National Institute for Health and Welfare (2016) show that the
average yearly consumption of 100% alcohol for persons at least 15 years old
was in the range of 10–13 liters per person during 1987–2007. Thus, in FIN-
RISK data the self-reported consumption is about 60–70% lower what has
been reported in the national consumption statistics (which were not used in
our modelling in any way). Although many reasons can partly explain the
differences between the consumption statistics and self-reported data, e.g.
questionnaire design and imperfect matching of survey frame with the target
population, the differences between non-participants and participants in the
follow-up data summarized in Figure 1 suggest that selection bias is present.

We observed differences in alcohol-related events for participants and non-
participants. Non-participants had significantly increased risk for alcohol-
related disease or death compared to participants, and men had a higher risk
than women. This phenomenon has also been observed for other data, see
(Romelsjö, 1989), (Gorman et al., 2014) and (Christensen et al., 2015).

When participation is selective with respect to variables to be studied,
which is the case for alcohol use, the estimates from complete case analysis are
affected by non-participation bias and the real level of uncertainty is hidden,
e.g. confidence intervals are not wide enough when complete case analysis is
used. Mäkelä (2003) and Dawson et al. (2014) demonstrated that this kind
of bias cannot be reduced for alcohol data with demographic information.

We compared the estimates obtained by a complete case analysis to esti-
mates obtained by adjusting for non-participation with a full Bayesian mod-
elling approach. The Bayesian approach gave a higher estimate of heavy
alcohol consumption than the complete case analysis. Our approach reduced
the bias and made the uncertainty visible. We estimated that the magnitude
of bias is 0–9 percentage points for men and 0–2 percentage points for women
in the FINRISK data. The Bayesian mean estimate was on average 1.5 times
higher for men and 1.8 times higher for women compared to participants.
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The use of our approach requires follow-up data and background variables
for the entire invited sample (including non-participants), follow-up time long
enough to observe alcohol-related disease events and Bayesian modelling.
The first requirement cannot be fulfilled in many countries because of lack of
register data or legal restrictions for data linkage. The second requirement
means that the prevalence estimates will be available only several years after
the survey. This requirement may be relaxed if there exist earlier surveys
that can be assumed to share the same model parameters with the current
survey. The third requirement is the easiest to fulfill because it only calls for
statistical expertise that is widely available.

To conclude, the prevalence of heavy alcohol consumption based on survey
participants only appears to be biased downward for both men and women.
The magnitude of observed absolute bias was larger for men than women.
The proposed non-participation adjustment approach is useful in context of
alcohol research when follow-up data on non-participants are available, and
the modelling requirements are met. The follow-up data can be used to
improve the estimation of the prevalence of heavy alcohol consumption.
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Appendix A

The statistical model is based on work presented in (Kopra et al., 2017a),
which utilises similar model to estimate the prevalence of smoking.

Notation for the data

For each individual i = 1, . . . , N invited to a survey, we denote Mi being
indicator of participation (Mi = 1 for participants and Mi = 0 for non-
participants). Background information Xi consists of both survey frame
and education information and is available for both participants and non-
participants. The survey frame has variables gender gi, region ri, age ai
and study year si. The education is denoted by ei, and values 1, 2 and 3
corresponds to high, middle and low education, respectively. Thus Xi =
(gi, ri, ai, si, ei). The heavy alcohol consumption Yi is a binary variable such
that heavy alcohol consumers have Yi = 1 and non-heavy alcohol consumers
have Yi = 0. The variable Ti is the age at the first diagnosis of any of the
alcohol-related diseases. The Ti is right censored and left-truncated at the
age when the person entered the study.

Participation model

The participation model

logit(P (Mi = 1|Xi, Yi)) = α0[gi,si] + α1[gi,si,ei] + η[gi,si]Yi

+ α2[gi,Yi](ai − 45) + α3[ri],
(1)

is a logistic regression model with following parameters. First, parameter
α0[gi,si] is a constant where notation [gi, si] indicates that there are indepen-
dent α0 parameters for all levels of gender gi and study year si. Second,
parameter α1[gi,si,ei] is the regression coefficient for education levels. For the
lowest education level this parameter is forced to be 0. The parameter η[gi,si]
describes how heavy alcohol consumption affects participation. For this pa-
rameter, we need an informative prior. The parameter α2[gi,Yi] describes how
age at study affect participation. Finally, α3[ri] is a term for the region. For
one of the regions, this parameter is forced to be 0. We selected a model
that included important factors affecting participation while ensuring the
convergence of the MCMC chains in Bayesian inference.
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Risk factor model

The model for risk factor (heavy alcohol consumption) is

logit(P (Yi = 1|Xi)) = β0[gi,ri,si,ei] + (si − ai − 1938)β1[gi,ri,si,ei]. (2)

The risk factor model is stratified by gender gi, region ri, study year si and
education ei using similar notation as in (1). The parameter β0[gi,ri,si,ei] is
constant for persons born in 1938. The parameter β1[gi,ri,si,ei] determines how
the heavy alcohol consumption prevalence changes with the year of birth.

Survival model

Let dNi(t) be the number of new events (increment) for the individual i
at the time t. The increment follows a Poisson distribution with intensity
parameters λi(t). The intensity λi(t) is modelled independently for both gen-
ders consisting of one-year period piecewise-constant baseline hazard terms
h0,0(t) for men and h0,1(t) for women, and heavy alcohol consumption term
exp (γ1Yi) and exp (γ2Yi) indicating the effect of heavy alcohol consumption
for men and women, respectively

dNi(t) ∼ Poisson(λi(t))

λi(t) =





exp (γ1Yi)h0,0(t), given that Ti ≥ t and g = 0

exp (γ2Yi)h0,1(t), given that Ti ≥ t and g = 1

0, Ti < t.

Prior distributions

The prior distributions are specified in Table 4. The prior distributions for
piecewise constant hazard terms h0,0(t) and h0,1(t) are specified such that the
hazard becomes increasing function with respect to t.
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Table 4: Prior distributions.

Notation Distribution Interpretation

Participation model
η Logistic(0, τ = 2.05) How heavy alcohol consumption

affects the participation.
α0, α1, α2, α3 N(0, 1000−1) Other parameters.

Risk factor model
β0, β1 N(0, 1000−1) Other parameters.

Survival model
h0,0(25) Unif(0, 20) Hazard for men at age 25–26.
h0,1(25) Unif(0, 20) Hazard for women at age 25–26.
h0,0(t), t = 26, 27, . . . Unif(h0,0(t− 1), 20) Hazard for men at age t.
h0,1(t), t = 26, 27, . . . Unif(h0,1(t− 1), 20) Hazard for women at age t.
γ1 N(0, 1000−1) How heavy alcohol consumption

affects hazard for men.
γ2 N(0, 1000−1) How heavy alcohol consumption

affects hazard for women.
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Appendix B

The study questions in 1987

CONSUMPTION OF ALCOHOL

1. Do you use any alcoholic drinks, even occasionally (f. ex.
beer, wine or spirits)?

1 yes

2 no, but I have not quitted completely

3 no, because I quit using alcohol ...... years ago

4 I have never used alcohol

If you have quitted alcohol use, please specify, why did you
quit?

no yes
For health reasons 1 2
For economic reasons 1 2
For other reasons 1 2

2. Have you during the past year (last 12 months) had any alco-
hol (beer, wine or spirits)?

1 yes

2 no (for your part, the questions are completed)

3. How often do you usually drink beer (III or IV A)?

1 daily

2 a few times a week

3 about once a week

4 few times a month

5 about once a month

6 about once in a few months

7 3 - 4 times a year

8 twice a year

9 once a year or more seldom
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0 never

4. How much do you usually drink beer at a time?

1 less than one bottle

2 1 bottle

3 2 bottles

4 3 bottles

5 4 - 5 bottles

6 6 - 9 bottles

7 10 - 14 bottles

8 15 bottles or more

9 I do not drink beer

5. How often do you usually drink wine (light or strong, also
home made)?

1 daily

2 a few times a week

3 about once a week

4 a few times a month

5 about once a month

6 about once in a few months

7 3 - 4 times a year

8 twice a year

9 once a year or more seldom

0 never

6. How much do you usually drink wine at a time?

1 half a glass

2 one glass

3 two glasses

4 about half a big bottle

5 a little less than one big bottle

6 about one big bottle

7 from one to two big bottles
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8 more than two big bottles
9 I do not drink wine

7. How often do you usually drink spirits?

1 daily
2 a few times a week
3 about once a week
4 a few times a month
5 about once a month
6 about once in a few months
7 3 - 4 times a year
8 twice a year
9 once a year or more seldom
0 never

8. How much do you usually drink spirits at a time?

1 less than one restaurant measure (less than 4 cl)
2 one restaurant measure (about 4 cl)
3 two restaurant measures (about 8 cl)
4 3 - 4 restaurant measures
5 5 - 6 restaurant measures (about quarter liter)
6 7 - 10 restaurant measures
7 about a half liter bottle
6 more than a half liter bottle
7 I do not drink spirits

9. How often have you during the last 12 months had so much
beer, wine or spirits that you have felt intoxicated?

1 a few times a week or more often
2 about once a week
3 a few times a month
4 about once a month
5 about once in two months
6 4 - 5 times a year
7 2 - 3 times a year
8 once a year
9 not even once

26



The changes in questions from 1987 to 1992

The questions 1, 6 and 7 have with changes in text. We have highlighted the
removed text with strikeout font (e.g. removed) and added text with italic
font (e.g. added). The changes are in comparison with the previous survey.

1. Do you use any alcoholic drinks, even occasionally (f. ex.
beer, wine or spirits)?

1 yes yes, at least once a month

2 no, but I have not quitted completely yes, less than once a month

3 no, because I quit using alcohol ...... years ago

4 I have never used alcohol

If you have quitted alcohol use, please specify, why did you

quit?

no yes
For health reasons 1 2
For economic reasons 1 2
For other reasons 1 2

6. How much do you usually drink wine at a time?

1 half a glass

2 one glass

3 two glasses

4 about one small bottle about half a big bottle

5 a little less than one big bottle

6 about one big bottle

7 from one to two big bottles

8 more than two big bottles

9 I do not drink wine

7. How much do you usually drink spirits at a time?

1 less than one restaurant measure (less than 4 cl)

2 one restaurant measure (about 4 cl)

3 two restaurant measures (about 8 cl)

4 3 - 4 restaurant measures

5 5 - 6 restaurant measures (about quarter liter)
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6 7 - 10 restaurant measures

7 about a half liter bottle

6 more than a half liter bottle

7 I do not drink spirits

The changes in questions from 1992 to 1997

The questions 4 and 6 have with changes in text. We have highlighted the
removed text with strikeout font (e.g. removed) and added text with italic
font (e.g. added). The changes are in comparison with the previous survey.

4. How much do you usually drink beer at a time? (1 bottle =
1/3 liters.)

1 less than one bottle

2 1 bottle

3 2 bottle

4 3 bottles

5 4 - 5 bottles

6 6 - 9 bottles

7 10 - 14 bottles

8 15 bottles or more

9 I do not drink beer

6. How much do you usually drink wine at a time?

1 half a glass

2 one glass (1 glass = c. 12 cl)

3 two glasses

4 about half a big bottle (1 bottle = 0,75 l)

5 a little less than one big bottle

6 about one big bottle

7 from one to two big bottles

8 more than two big bottles

9 I do not drink wine
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The changes in questions from 1997 to 2002

In 2002 the questions 3–8 have been replaced with a new question number 3.

3. How often did you drink the following amounts in one day
during the last 12 months? Instruction: Start answering from the
first row. Mark (x) the most suitable ’How often?’ alternative. Then
continue row at a time down in the same manner. Please mark only
one alternative per row.

1 dose = bottle (1/3 liter) beer (class III)
or a glass (12 cl) of light wine
or a glass (8 cl) of strong wine
or a glass (4 cl) of spirits or other strong liquor

Bottle (0.33 liter) beer (class IV), Gin Long Drink or strong cider = 1.25 doses
Large bottle (0.5 liter) beer (class III) = 1.5 doses
Large bottle (0.5 liter) beer (class IV) = 2 doses
Bottle (0.75 liter) wine = 7 doses
Bottle (0.75 liter) strong wine = 10 doses
Bottle (0.5 liter) strong alcohol (e.g. Koskenkorva) = 12 doses

Doses Never Once a month 2-3 times About once 2-3 times 4-5 times 6-7 times
per day or more seldom a month a week a week a week a week
15 or more � � � � � � �
13-14 � � � � � � �
11-12 � � � � � � �
9-10 � � � � � � �
7-8 � � � � � � �
5-6 � � � � � � �
3-4 � � � � � � �
1-2 � � � � � � �

The changes in questions from 2002 to 2007

In 2007 the new question number 4 has been updated with a small change in
the instructions and a change in the categories of consumed doses per day.

4. How often did you drink the following amounts in one day
during the last 12 months?
Instruction: Start answering from the first row. Mark (x) the most
suitable ’How often?’ alternative. Then continue row at a time down
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in the same manner. Please mark only one alternative per row.
1 dose = bottle (1/3 liter) beer (class III)

or a glass (12 cl) of light wine
or a glass (8 cl) of strong wine
or a glass (4 cl) of spirits or other strong liquor

Bottle (0.33 liter) beer (class IV), Gin Long Drink or strong cider = 1.25 doses
Large bottle (0.5 liter) beer (class III) = 1.5 doses
Large bottle (0.5 liter) beer (class IV) = 2 doses
Bottle (0.75 liter) wine = 7 doses
Bottle (0.75 liter) strong wine = 10 doses
Bottle (0.5 liter) strong alcohol (e.g. Koskenkorva) = 12 doses

Doses At least 4 2-3 times About once 1-2 times 3-10 times 1-2 times Never
per day times a week a week a week a month a year a year
18 or more 1 2 3 4 5 6 7
13-17 1 2 3 4 5 6 7
8-12 1 2 3 4 5 6 7
5-7 1 2 3 4 5 6 7
3-4 1 2 3 4 5 6 7
1-2 1 2 3 4 5 6 7
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