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Abstract

In epidemiological surveys, data missing not at random (MNAR)
due to survey nonresponse may potentially lead to a bias in the risk
factor estimates. We propose an approach based on Bayesian data
augmentation and survival modelling to reduce the nonresponse bias.
The approach requires additional information based on follow-up data.
We present a case study of smoking prevalence using FINRISK data
collected between 1972 and 2007 with a follow-up to the end of 2012
and compare it to other commonly applied missing at random (MAR)
imputation approaches. A simulation experiment is carried out to
study the validity of the approaches. Our approach appears to reduce
the nonresponse bias substantially, where as MAR imputation was not
successful in bias reduction.

Keywords: Bayesian estimation; data augmentation; follow-up data; health
examination surveys; multiple imputation; survival analysis
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1 Introduction

Population level estimates of risk factors are of major interest in epidemiol-
ogy. Data on risk factors such as blood pressure, cholesterol level, body mass
index, alcohol consumption and daily smoking are often collected in health
examination surveys (HES). In a HES, the data on risk factors are gathered
usually via both questionnaires and physical measurements. The trends of
population level risk factors are monitored and they are valuable input for
policy decisions.

Missing data by unit nonresponse occurs in a HES as invitees neither
participate to physical measurements nor return a survey questionnaire. The
decision about participation have been found to depend on the risk factors,
such as smoking (Shahar et al., 1996), either directly or via a common cause
such as health awareness. This may be deduced from the fact that the
non-participants have a higher risk of death (Jousilahti et al., 2005; Harald
et al., 2007; Karvanen et al., 2016). This dependence causes missing data
to be classified as missing not at random (MNAR) (Rubin, 1976). Because
the data are MNAR, the population level risk factors calculated from the
participants’ data are biased, and they usually give an overly healthy view
of the population. Biased estimates of risk factor prevalence may seriously
misinform decision makers. Instead of analysing only the participants data,
the posterior distributions of risk factor levels of a whole sample, including
non-participants, should be estimated. This requires external information
and modelling assumptions.

In this paper, we demonstrate how follow-up data on endpoints associated
with the risk factor of the interest provides external information that allows
us to reduce the bias caused by selective non-participation. We propose a
Bayesian method for the estimation of risk factor prevalence and the missing
data mechanism, when the data are MNAR.

Our datasets origin from the FINRISK studies, which are national HES
providing information about the health of Finns. We improve and extend
an earlier work (Kopra et al., 2015) on the estimation of smoking prevalence
from FINRISK data. The key improvements are: a fully Bayesian model is
used, the survival model is more flexible, and informative prior is utilised
instead of assumption of conditional independence (Kopra et al., 2015, Eq.
(2)). Differently from Kopra et al. (2015) the study years 2002 and 2007 are
included in the modelling.

Next section describes the data of the FINRISK studies and follow-up.
Section 3 presents the Bayesian model and the priors that we apply to smok-
ing prevalence estimation. Section 4 explains model fitting, and Section 5
provides a simulation study on the proposed approach. We evaluate alterna-
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tive methods in Section 6. In Section 7 we apply our approach to real data
from the FINRISK studies and provide smoking prevalence estimates for both
men and women. Section 8 discusses the results and methods presented.

2 Data description

Our HES data contain eight FINRISK studies conducted in selected geo-
graphical areas of Finland once in every five years in 1972-2007 (Laatikainen
et al., 2003; Harald et al., 2007). In each study year, persons were selected
to the FINRISK studies in a random sampling stratified by region, gender
and 10-year age group. Our data are restricted to the two regions (Northern
Savonia and North Karelia) that have been included in all eight studies. In
total, the data contain 52, 325 persons including 9, 928 persons with missing
smoking indicator.

Each person selected to the study received a letter of invitation, in which
he or she was asked to fill in a survey questionnaire and participate to physical
measurements in the local survey site. If the person participated, the filled
questionnaire was collected and the physical measures were taken. If the
person did not participate, then risk factors are missing, but background
variables, study year, age, gender, and region, are known from the sampling
frame. Table 1 shows that the participation rates have dramatically decreased
from 1972 to 2007. It can be also seen that women have participated more
actively than men in all study years. We also know that person’s age affects
participation (Kopra et al., 2015).

Our HES data were linked together with follow-up data of all participants
and non-participants. The follow-up data contains the exact dates and di-
agnoses (ICD codes) of hospitalisations and deaths. In Finland, this kind of
follow-up data can be collected from administrative registers for both par-
ticipants and non-participants. The follow-up period started at the time of
study for each person and ended on 31st December 2012 for all FINRISK
study years. Thus, the length of the follow-up period varies by study years.

It is well-known that smoking is a key risk factor for lung cancer and
chronic obstructive pulmonary disease (COPD) (Doll & Hill, 1956; Mannino
& Buist, 2007). Thus, we use lung cancer and COPD events together as an
endpoint. Table 2 shows that non-participants have a higher rate of disease
events than participants.

We limit in our analysis the age range to 25–64 years-old and select the
subset of healthy persons with respect to our endpoint variables. The two
exceptions are 1972 and 1977 studies, which have age ranges of 25–59 and
30–64 years-old, respectively.
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Table 1: Participation rates (%) and size of survey sample (n), by gender,
region and year. The participation rates of 1972 and 1977 are approximated
(*) as the region information of non-participants is missing for these years.

North Karelia Northern Savonia
Year men women men women

1972 % 84.3* 88.5* 88.4* 91.3*
n 2,641 2,607 3,574 3,555

1977 % 85.7* 89.0* 90.1* 93.0*
n 2,323 2,382 3,223 3,391

1982 % 76.1 83.2 80.8 86.0
n 2,007 2,019 1,810 1,566

1987 % 78.8 85.3 80.3 86.3
n 1,971 1,976 979 988

1992 % 68.2 80.8 75.9 83.8
n 984 993 982 990

1997 % 72.1 75.3 70.8 79.8
n 1,052 1,020 990 997

2002 % 66.5 76.2 66.2 78.2
n 1,021 1,011 1,000 1,000

2007 % 63.0 71.9 61.1 70.4
n 811 825 817 820

Total % 77.5 83.5 81.5 87.1
n 12,810 12,833 13,375 13,307
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Table 2: The total count of observed lung cancer and COPD events, events
per 1000 follow-up person-years, and participation rate by region and gender.

Region Gender Participant Events Events/1000 years Participation (%)

N. Karelia Men Yes 387 1.75 77.4
N. Karelia Men No 166 3.14

N. Savonia Men Yes 479 1.85 81.6
N. Savonia Men No 129 2.85

N. Karelia Women Yes 75 0.28 83.6
N. Karelia Women No 43 1.02

N. Savonia Women Yes 62 0.21 87.0
N. Savonia Women No 33 0.94

3 Bayesian model

The modelling is based on the idea that although it is impossible to directly
observe the smoking status of non-participants, we can obtain information
on smoking indirectly from the follow-up data. More precisely, the modelling
uses the observed incidence differences of the smoking-based diseases between
participants and non-participants, which allows us to adjust the estimates of
smoking prevalence. Full Bayesian approach is applied, and model fitting is
executed using Markov chain Monte carlo (MCMC) methods (?).

3.1 Notation for the data

We introduce our model using causal models with design (Karvanen, 2015),
and make a difference between measurements and underlying causal vari-
ables. The model is presented in Figure 1. For each person i = 1, . . . , N
invited to the survey, we denote participation indicator by Mi, which takes
the value Mi = 1 if person i participated, and value Mi = 0 otherwise. Value
Mi = 0 indicates missing risk factor data. The indicator of self-reported
daily smoking is denoted by Yi and the corresponding measurement by Y ∗

i .
Variable Yi takes value 1, if a person is a daily smoker, and 0 otherwise. Class
Yi = 0 includes earlier smokers who quitted. The value of Y ∗

i is known for the
participants, then Y ∗

i = Yi, but missing for the non-participants. We denote
by vector X∗

i the variables age ai, gender gi, region ri and study year si in
the background data observed for all sample members. The values gi = 0
stand for men, and gi = 1 for women. The North Karelia region is denoted
by ri = 0 and Northern Savonia by ri = 1.
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We denote Ti as the age at the day of diagnosis, which may also be the
age at the time of death if a person dies without previous lung cancer or
COPD diagnoses and the death is caused by either of the two diseases. If
the person has not been diagnosed, the corresponding measurement T ∗

i is
missing, and Ti is right-censored. Variable Tcens,i is the age of the person i in
the end of the year 2012, which is the end of our follow-up period, or the age
of death for the person who have died before the end of the year 2012. The
variable Tobs,i is the minimum of Ti and Tcens,i, so Tobs,i = min(Ti, Tcens,i), and
T ∗
cens,i = Tcens,i and T ∗

obs,i = Tobs,i.

3.2 Submodels

The joint model for data from a HES linked with follow-up consists of three
submodels:

1. a participation model in which participation is explained by daily smok-
ing and background variables (arrow Xi →Mi in Figure 1),

2. a risk factor model for daily smoking given the background variables
(arrow Xi → Yi),

3. a survival model for the follow-up data given the daily smoking and
background variables (arrows Yi → Ti and Xi → Ti).

These three submodels together form a joint model for the data, which we
call Bayesian MNAR model, see Figure 1. The arrows Xi →Mi and Yi →Mi

correspond to the participation submodel, that can be written as P (Mi =
1|Xi,Mi). The arrow Xi → Yi corresponds to the risk factor submodel
(distribution P (Yi|Xi)), and the arrows Yi → Ti and Xi → Ti correspond to
the survival model (distribution P (Ti|Yi, Xi)). All the submodels are fitted
together because each of them contains the indicator of smoking, which has
missing values to be imputed.

3.3 Participation model

First, our model for participation indicator Mi is

logit(P (Mi = 1|Xi, Yi)) = α0[gi,si] + η[gi,si]Yi + α1[gi,Yi](ai − 45) + α2ri, (1)

gi, si, ai and ri are part of Xi and they stand for gender, study year, age,
and region, respectively. Variable Yi stands for smoking. The roles of model
parameters α0[gi,si], η[gi,si], α1[gi,Yi] and α2 are explained below. Parameter
α0[gi,si] is a regression coefficient (intercept) which varies over the levels of
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Figure 1: A graph representing the model and the dependencies between
the variables of HES data and the follow-up data. Direct causal effects are
represented as arrows. Measurement variables are denoted with asterisk, e.g.
X∗
i , and are presented as filled circles. The causal variables do not have

asterisk symbol (e.g. Xi), and they are drawn unfilled to indicate that they
are not observed directly but via measurement variables. The measurement
variables always have one participation indicator (mi or Mi) and one causal
variable as their parent. The graph tells that X∗

i , T ∗
obs,i and T ∗

obs,i are collected
for each member of the sample while Y ∗

i is measured only for participants,
and is missing for the non-participants.
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gi and si, i = 1, . . . , N . The variable gi is binary and si has eight possible
values, which create the total of 16 intercept parameters. The parameters
η[gi,si] are gender-specific regression coefficients modelling how daily smoking
affects participation in each year. We also take into account how the age of
person affects participation; the gender-specific coefficients α1[gi,0] and α1[gi,1]

model how age affects participation for non-smokers and smokers, respec-
tively. The parameter α2 describes the differences in participation between
the two regions.

3.4 Risk factor model

Next, we need to model smoking indicator Yi by background variables Xi =
(gi, si, ai, ri). We use a logistic regression model

logit(P (Yi = 1|Xi)) = β0[gi,ri,si] + (si − ai − 1938)β1[gi,ri,si], (2)

where coefficients β0 and β1 vary between groups defined by combinations of
gender gi, region ri and study year si similarly as in (1). The year of birth
si− ai for person i is centered at its rounded population average 1938 in the
model.

3.5 Survival model

To define a survival model for P (Ti|Xi, Yi), a counting process notation is
used. Let Ni(t) stand for the count of disease diagnoses up to age t for person
i. Let dNi(t) be the increment of the counting process over one-year time
interval [t, t+1), and let t take discrete values 25, 26, . . . , 100. Now, we model
dNi(t) with a piecewise constant hazard model assuming that for each one-
year time-period, the gender-specific hazard h0,g(t) remains constant (g = 0, 1
stands for the gender). The model for follow-up data is

dNi(t) ∼ Poisson(λi(t)) (3)

λi(t) =


exp (γ1Yi)h0,0(t), given that Ti ≥ t and g = 0

exp (γ2Yi)h0,1(t), given that Ti ≥ t and g = 1

0, Ti < t,

(4)

where γ1 and γ2 model how smoking increases the hazard for men and women,
respectively.
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3.6 Prior distributions

For the participation model, we use informative prior distribution for the
difference between smokers and non-smokers. An informative prior for η[gi,si]
is derived as follows. We consider a 45-year-old non-smoker, who participates
with probability p = 0.7, and elicit the corresponding prior probability for
a smoker, who is otherwise similar. We consider that there is a 15% chance
that the participation prior probability p is less than 0.50, about 30% chance
for less than 0.60, and 50% chance for less than 0.70. These considerations
together with an assumption on a logistic distribution for η[gi,si] lead to prior
distribution

η[gi,si] ∼ Logistic(µ = 0, s = 2.05−1),

which makes the prior distribution of p to have expected value E(p) = 0.676
and 95% credible interval [0.281, 0.933]. Here, logistic distribution density
function is

flogistic(x|µ, s) =
e(x−µ)/s

s(1 + e(x−µ)/s)2
,

for x, µ ∈ R and scale parameter s > 0.
The prior distributions for participation model coefficients α0[gi,si] and

α1[gi,Yi], and risk factor model parameters β0[gi,ri,si] and β1[gi,ri,si] are normal
distributions with mean µ = 0 and variance σ2 = 1000 (uninformative pri-
ors).

Survival model parameters γ1 and γ2 are also a priori normally distributed
with µ = 0 and σ2 = 1000. Our prior distribution for baseline hazard h0,g(t)
is monotonically increasing with age

h0,g(25) ∼ Uniform(0, 20)

h0,g(t) ∼ Uniform(h0,g(t− 1), 20), where t = 26, 27, . . . , 100,

where g stands for gender, 0 for men and 1 for women. This means that
model assumes that risk of smoking-based diseases only increase with age.
This assumption seems to be in agreement with our data.

4 Model fitting

As the number of model parameters (316) and missing values (9,928) is large,
there are over 10,000 variables to sample at each iteration of the MCMC
model fitting process. This creates a computational challenge for Bayesian
model fitting. The Markov chains typically require thousands of iterations or
more to obtain satisfactory convergence, which requires a lot of computing
time.
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To impute the missing values for smoking indicators, the data augmen-
tation was applied (Tanner & Wong, 1987). A Bayesian MNAR model de-
scribed in Figure 1 and Sections 3.3, 3.4 and 3.5 was used. The augmented
data for smoking indicator Yi are drawn from fully conditional distribution
P (Yi|Mi = 0, Xi, Ti), given its parent nodes (Xi) and child nodes (Mi and
Ti).

We used Just Another Gibbs Sampler -software (JAGS) (?), R (?) and
rjags package (Plummer, 2015) to fit the model. Seven parallel MCMC
chains were used. Each chain had 9000 burn-in iterations, 45900 actual
iterations with thinning interval 75, which makes a total of 612 iterations
per chain to be recorded. The time consumed for this model fitting using
parallel chains was about 107 hours, which makes 7 seconds per each iteration
and less than 0.7 milliseconds per each parameter for one iteration. The high
absolute number of missing values (9, 928) explains the long running time.
Because of high autocorrelations in the chains, we decided to use a long
thinning interval and many iterations to reduce the autocorrelations in the
saved iterations of the MCMC and larger sample of the posterior for the
final trends. The convergence of the chains was examined both visually and
using Brooks-Gelman R̂-diagnostics (Brooks & Gelman, 1998). All the R̂ test
statistics for model coefficients were below 1.01 which indicates convergence.

5 Simulation study

We carried out a simulation experiment to demonstrate the performance of
the model. The simulated data allow us to compare the performance of the
estimated prevalence of smoking with true prevalence, which is known with
the simulated data but not with the HES data. The actual values of the back-
ground variables from the FINRISK study were used together with parameter
estimates from a preliminary analysis. Thus, the simulation experiment had
conditions similar to the real data, e.g. the smoking prevalence had a de-
creasing trend for men and an increasing trend for women. For both genders
the participation was selective, and the participation rate had a decreasing
trend.

The simulation was implemented using R language, and the data were
simulated from the Bayesian MNAR model presented in Section 3. Because
of the computational burden of model fitting, the model was fitted into a
single simulated data set.

The model fitting for the Bayesian MNAR model with simulated data
was implemented as described in Section 4. All the R̂-diagnostics were be-
low 1.01 which indicates convergence. We inspected the posterior correla-
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tions between the model parameters and found strong correlations (≥ 0.9
or ≤ −0.9) between some of the parameters. In the risk factor model, the
strongest correlations were observed between the parameters β0 and β1. The
median of these correlations was −0.434 and the range was [−0.905, 0.661].
Conditioning with Mi likely causes these posterior correlations. On the par-
ticipation model, the strongest posterior correlations were found between
the α0[gi,si] and η[gi,si]. For men, those eight correlations ranged between
−0.972 and −0.899, and for women between −0.860 and −0.665. In the sur-
vival model, strong positive correlations occurred particularly between the
hazards of consecutive years, which is natural to this type of models. The
highest correlations for men were 0.920 and for women 0.952.

It can be seen from Figure 2 that with an exception of women in 1972,
the true prevalence is located inside the credible interval and there is no in-
dication of systematic bias in the posterior mean. In contrast, the prevalence
calculated using only the participants systematically underestimates the true
prevalence. As the same family of models was used both to simulate the data
and to fit the parameters, the Bayesian MNAR approach is expected to per-
form very well. However, the experiment demonstrates that the model can
be estimated from the data.

6 Alternative methods

In addition to the Bayesian MNAR approach, we considered two alternative
modelling approaches and the complete case analysis. Both modelling ap-
proaches utilize the MAR assumption and the complete case analysis uses
data on participants only. In terms of Figure 1, the MAR assumption omits
the arrow Yi → Mi, which means that participation is not selective with
respect to smoking.

First, the Bayesian MAR approach differs from the Bayesian MNAR ap-
proach such that the entire survival model (4) is omitted, and the regression
coefficient η[gi,si] is fixed to zero in participation model (1).

We also used the frequentist MAR model which was implemented using
the mice package in R (van Buuren & Groothuis-Oudshoorn, 2011). The
missing smoking indicator was imputed using a logistic regression model that
had full interactions between year of birth, gender, region and year, and full
interactions between gender, event indicator, and age at the event/censoring.
The year of birth and the age at event/censoring were used as linear covariates
and the other variables were categorical.

We fitted these alternative approaches to data simulated from the MNAR
model which is selective with respect to smoking. The trend estimates are
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Figure 2: Trends for the simulation experiment. The red line with triangles
is the true proportion of smokers used in the simulation. The blue line with
circles is estimated from participants only and the black line with squares is
model-based posterior mean with 95% credible intervals (dashed black line)
calculated from the simulated data.
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presented in Appendix A in Table 4. We calculated root mean square er-
rors (RMSE) for the Bayesian MNAR model and each of the alternative
approaches. The RMSE was calculated using formula

RMSE(y, ytrue) =

√√√√ 1

n

n∑
i=1

(yi − ytrue,i)2,

where y is the estimated smoking prevalence (%) and ytrue is the true smoking
prevalence from simulation. The RMSE was calculated over the regions, the
genders and the study years, which gives one RMSE value for each approach.

The Bayesian MNAR approach had the smallest RMSE, 1.65. The Bayesian
MAR and the frequentist MAR methods have very similar RMSE with each
other, 3.34 and 3.37, respectively. These two methods were slightly more
accurate than the complete case approach with RMSE 3.48.

7 Application to FINRISK data

The trends of daily smoking for the FINRISK data estimated using the
Bayesian MNAR model are reported in Figure 3 and compared to partic-
ipant trends, which are often reported in HES. The difference between the
smoking prevalence estimates of the complete case (participants) and the
Bayesian MNAR approaches is the highest for the study years 1977, 1982,
and 1987 (Figure 3 and Table 3 in Appendix A). Starting from 1992, the
complete case trends are within the 95% credible interval of the Bayesian
MNAR model, but they are systematically below the posterior mean. The
proportion of missing data is higher for the later study years than the earlier
ones, which makes the credible intervals wider.

The values of the region variable ri for the study years 1972 and 1977
were missing for non-participants. We used a single imputation with fixed
probabilities
P (ri = 1|si = 1972) = 0.495 and P (ri = 1|si = 1977) = 0.493 as in Kopra
et al. (2015). We decided to use single imputation a prior to model fitting
because the regions seemed to be rather similar with respect to smoking
prevalence, and the participation rates were high.

We executed sensitivity analysis to find out if model can be fitted with
even less informative prior. We tried prior distributions for η with s pa-
rameter set to (2.05/2)−1, which corresponds to doubling the prior variance.
We found out that the Markov chains do not converge. More precisely, con-
vergence problems were found with η-parameters for which the R̂s ranged
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Figure 3: Participant trends (blue line with circles) and model-based pos-
terior trends (black line with squares) with 95% credible intervals (dashed
black line) for the FINRISK data. For numeric presentation of trends, see
Table 4 in Appendix A.
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between 1.097 and 1.828 after 45900 iterations and 9000 burn-in. Thus, it
appears that vague prior distributions are not applicable.

8 Discussion

We have proposed the Bayesian MNAR modelling approach to reduce the
non-participation bias and applied the approach to the FINRISK studies. In
a simulation experiment, we compared our approach to the Bayesian MAR
approach, to the complete case analysis, and the frequentist MAR imputa-
tion. The latter two were easier to use than the Bayesian MNAR approach
but did not substantially reduce the non-participation bias. The proposed
approach appears to reduce the non-participation bias.

Trends by the Bayesian and the frequentist MAR approaches are essen-
tially the same as participants’ trends. Thus, the MAR approaches do not
reduce the bias of risk factor levels by much. Although there may be ways
to improve the imputation model (?), the MAR imputation do not account
for selective non-participation.

The information about non-participants’ risk factor levels comes from
the survival data. The risk factor of interest must be a strong predictor of
the survival outcome. The estimation of survival model parameters requires
that a sufficient number of events have been recorded. This implies that the
length of follow-up must be long enough and if the event is rarely observed,
the number of persons must be high. The information obtained from the
survival model may be insufficient by itself and need to be supported by an
informative prior on the selection mechanism.

In many countries, it is not technically or legally possible to link the
HES data of non-participants to follow-up data. The requirement on the
availability of survival data for both participants and non-participants is a
major limitation for the proposed approach.

The Bayesian model fitting is often a computational challenge, particu-
larly when the amount of missing data is large. The memory management
and computation time were issues in our case study, due to a large amount
of missing data. In our first attempts, we tried to save all the imputations,
which filled the RAM memory of the computer (16 GB) quite rapidly. We
later realised that it is possible to calculate sufficient (summary) statistics,
e.g. count of smokers and non-smokers by gender, year and region, and store
only them. We also reduced the time required per one iteration by coarsening
the continuous covariates (the age) of the survival model and summing over
discrete or discretised covariates, and by modelling the number of events in
each risk group using Poisson distribution.
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Another challenge was the posterior correlations caused by the model
structure and non-random missingness. One possibility to alleviate this prob-
lem could be to develop a custom MCMC algorithm with blocked updating of
the parameters with high posterior correlations (Haario et al., 2001). How-
ever, this often requires custom programming and is therefore much more
laborious than an application based on JAGS, which we have applied. Thus,
if one needs to use data with more missing data than in our case study
or multiple variables with MNAR missingness, we recommend using some
specialized MCMC algorithms, or possibly the iterated importance sampling
algorithm (Celeux et al., 2006).

Additional fully observed covariates can be added into the model without
excessive increase in computational burden. If more variables with missing
data are imputed, the model fitting is slowed down proportional to increase of
absolute amount of missing values. This is because at each MCMC iteration
all the missing values need to be imputed.

Selective non-participation in HES is an important problem that may have
implications to the decisions on health policy. Our solution is not simple to
implement but the reduction of selection bias makes it worth of the effort.

Acknowledgements

The work was supported by the Academy of Finland [grant number 266251].

References

Brooks, S & Gelman, A (1998), ‘General methods for monitoring conver-
gence of iterative simulations,’ Journal of Computational and Graphical
Statistics, 7(4), pp. 434–455.

Celeux, G, Marin, J & Robert, C (2006), ‘Iterated importance sampling
in missing data problems,’ Computational Statistics and Data Analysis,
50(12), pp. 3386–3404.

Doll, R & Hill, A (1956), ‘Lung cancer and other causes of death in relation
to smoking,’ British Medical Journal, 2(5001), p. 1071.

Haario, H, Saksman, E & Tamminen, J (2001), ‘An adaptive metropolis
algorithm,’ Bernoulli, 7(2), pp. 223–242.

Harald, K, Salomaa, V, Jousilahti, P, Koskinen, S & Vartiainen, E (2007),
‘Non-participation and mortality in different socioeconomic groups: the

16



FINRISK population surveys in 1972-92,’ Journal of Epidemiology and
Community Health, 61(5), pp. 449–54.

Jousilahti, P, Salomaa, V, Kuulasmaa, K, Niemelä, M & Vartiainen, E
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Appendix A

Table 3: The trends and 95 % credible intervals of simulation experiment
and alternative approaches.

Northern Karelia North Savonia
year method men women men women
1972 Bayes+MAR 50.9 (50.2, 51.7) 50.3 (49.6, 51.0) 12.2 (11.8, 12.7) 14.2 (13.7, 14.6)
1972 Bayes+MNAR 49.5 (47.8, 51.2) 48.8 (47.3, 50.5) 12.4 (11.7, 13.2) 14.7 (14.0, 15.5)
1972 Complete case 50.6 (48.5, 52.7) 50.0 (48.2, 51.7) 12.2 (10.8, 13.5) 14.2 (13.0, 15.4)
1972 mice 51.0 (49.0, 53.0) 50.4 (48.6, 52.1) 12.2 (10.8, 13.6) 14.2 (13.0, 15.5)
1972 True 49.1 48.9 12.9 15.2
1977 Bayes+MAR 42.6 (41.8, 43.4) 42.9 (42.2, 43.7) 8.8 (8.5, 9.2) 11.9 (11.5, 12.3)
1977 Bayes+MNAR 46.9 (45.7, 48.3) 47.3 (45.8, 48.8) 12.2 (11.2, 13.2) 16.6 (15.7, 17.7)
1977 Complete case 42.6 (40.5, 44.8) 43.0 (41.1, 44.8) 8.9 (7.7, 10.1) 11.9 (10.8, 13.1)
1977 mice 42.8 (40.7, 45.0) 43.1 (41.3, 44.9) 8.8 (7.4, 10.3) 11.9 (10.6, 13.2)
1977 True 47.0 47.5 13.2 17.5
1982 Bayes+MAR 38.4 (37.2, 39.5) 42.0 (40.6, 43.3) 14.5 (13.9, 15.2) 13.1 (12.3, 13.9)
1982 Bayes+MNAR 44.0 (41.4, 46.5) 46.7 (43.5, 50.2) 18.3 (16.8, 19.9) 17.7 (16.0, 19.4)
1982 Complete case 38.2 (35.8, 40.6) 41.7 (39.0, 44.4) 14.5 (12.8, 16.2) 13.0 (11.2, 15.0)
1982 mice 38.6 (36.2, 41.1) 42.0 (39.5, 44.6) 14.4 (12.7, 16.0) 13.0 (11.1, 15.0)
1982 True 45.0 47.7 19.6 19.7
1987 Bayes+MAR 35.1 (34.0, 36.4) 40.1 (38.3, 42.0) 15.5 (14.8, 16.2) 13.0 (12.0, 14.1)
1987 Bayes+MNAR 38.9 (36.2, 41.1) 44.7 (41.8, 47.3) 16.3 (15.2, 17.4) 13.9 (12.6, 15.3)
1987 Complete case 34.8 (32.4, 37.2) 39.8 (36.2, 43.4) 15.4 (13.7, 17.2) 12.9 (10.7, 15.3)
1987 mice 35.0 (32.5, 37.5) 40.5 (36.9, 44.2) 15.5 (13.8, 17.2) 13.3 (10.9, 15.6)
1987 True 39.0 44.1 17.4 15.5
1992 Bayes+MAR 35.0 (32.9, 37.1) 37.7 (35.7, 39.6) 12.7 (11.6, 13.9) 15.0 (13.9, 16.2)
1992 Bayes+MNAR 32.6 (28.9, 37.2) 36.0 (32.2, 40.1) 15.6 (13.6, 17.8) 16.7 (14.9, 18.9)
1992 Complete case 33.8 (30.3, 37.4) 36.8 (33.2, 40.4) 12.6 (10.3, 15.0) 14.8 (12.4, 17.4)
1992 mice 35.2 (31.4, 39.0) 38.0 (34.3, 41.8) 12.7 (10.3, 15.0) 15.2 (12.7, 17.8)
1992 True 38.0 39.8 16.0 17.4
1997 Bayes+MAR 33.4 (31.7, 35.3) 35.2 (33.1, 37.4) 18.4 (17.2, 19.8) 19.4 (18.1, 20.8)
1997 Bayes+MNAR 34.1 (29.7, 38.9) 34.3 (29.8, 40.0) 19.1 (16.7, 22.0) 19.9 (17.8, 22.0)
1997 Complete case 32.6 (29.3, 36.0) 34.0 (30.5, 37.7) 17.9 (15.3, 20.6) 18.9 (16.2, 21.7)
1997 mice 33.8 (30.3, 37.4) 35.4 (31.5, 39.2) 18.3 (15.9, 20.8) 19.5 (16.8, 22.1)
1997 True 33.5 34.9 21.2 21.8
2002 Bayes+MAR 35.2 (33.1, 37.2) 44.2 (42.0, 46.3) 22.2 (20.7, 23.7) 17.9 (16.5, 19.3)
2002 Bayes+MNAR 36.2 (30.7, 42.9) 44.2 (38.3, 50.2) 22.8 (20.4, 25.5) 17.2 (15.1, 19.6)
2002 Complete case 33.6 (30.1, 37.2) 42.6 (38.8, 46.3) 22.0 (19.1, 25.0) 17.2 (14.6, 20.0)
2002 mice 35.2 (31.3, 39.1) 44.2 (40.5, 48.0) 22.1 (19.5, 24.8) 18.1 (15.3, 20.8)
2002 True 35.3 44.3 25.0 19.1
2007 Bayes+MAR 35.2 (32.7, 37.7) 41.8 (39.2, 44.2) 22.4 (20.6, 24.2) 29.6 (27.7, 31.5)
2007 Bayes+MNAR 33.6 (27.7, 40.5) 39.7 (33.0, 46.4) 21.2 (18.2, 24.5) 28.1 (24.7, 31.5)
2007 Complete case 33.3 (29.3, 37.5) 39.9 (35.7, 44.2) 21.7 (18.5, 25.1) 28.9 (25.3, 32.7)
2007 mice 35.0 (30.6, 39.3) 42.1 (37.8, 46.3) 22.5 (19.3, 25.8) 29.4 (26.1, 32.7)
2007 True 32.3 37.9 23.5 28.8
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Table 4: Participant trends and model-based posterior trends with 95% cred-
ible intervals for the FINRISK data.

Northern Karelia North Savonia
year method men women men women
1972 Bayes 50.3 (49.0, 51.9) 11.9 (11.0, 12.9) 49.7 (48.6, 50.8) 13.5 (12.7, 14.5)
1972 Complete case 52.2 (50.3, 54.5) 11.7 (11.0, 13.9) 50.9 (49.4, 53.0) 13.2 (12.0, 14.6)

1977 Bayes 48.5 (46.5, 51.0) 13.2 (12.0, 14.5) 46.4 (45.1, 47.9) 14.4 (13.4, 15.4)
1977 Complete case 43.1 (41.1, 45.4) 8.9 (7.5, 10.4) 43.1 (41.4, 45.0) 11.0 (9.8, 12.3)

1982 Bayes 43.9 (41.3, 46.5) 18.9 (17.0, 21.1) 46.5 (44.0, 49.0) 18.8 (17.2, 20.6)
1982 Complete case 36.1 (34.0, 39.1) 14.2 (12.6, 15.9) 42.6 (40.6, 45.6) 15.9 (14.4, 18.2)

1987 Bayes 39.0 (36.4, 42.5) 17.8 (16.3, 19.6) 43.6 (40.7, 46.7) 17.2 (15.5, 19.2)
1987 Complete case 34.4 (33.7, 38.9) 15.7 (13.3, 16.6) 39.8 (36.8, 43.6) 15.3 (13.0, 17.7)

1992 Bayes 35.5 (31.2, 39.8) 17.6 (15.6, 20.0) 38.3 (35.2, 41.7) 20.1 (18.0, 22.1)
1992 Complete case 31.2 (28.3, 36.1) 16.0 (14.2, 19.2) 35.3 (32.2, 39.7) 18.0 (15.8, 20.7)

1997 Bayes 33.5 (29.8, 37.5) 20.2 (17.9, 22.9) 32.5 (28.6, 36.8) 19.5 (17.8, 21.5)
1997 Complete case 31.1 (28.3, 35.4) 16.5 (14.4, 19.6) 30.7 (27.7, 35.5) 17.0 (14.7, 19.6)

2002 Bayes 34.5 (30.4, 39.2) 24.8 (22.2, 27.6) 36.5 (32.4, 41.1) 21.3 (19.0, 24.1)
2002 Complete case 32.5 (28.4, 35.8) 22.4 (19.9, 25.4) 34.3 (31.2, 38.6) 19.2 (17.0, 22.1)

2007 Bayes 30.4 (25.5, 35.5) 18.6 (15.9, 21.7) 29.3 (24.4, 35.5) 20.4 (17.6, 23.5)
2007 Complete case 29.2 (26.0, 34.0) 17.3 (14.5, 20.5) 28.3 (25.7, 34.1) 19.5 (16.9, 23.0)
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